Skip to main content
Solve for w
Tick mark Image

Similar Problems from Web Search

Share

\left(\sqrt{3w+14}\right)^{2}=\left(\sqrt{5w+2}\right)^{2}
Square both sides of the equation.
3w+14=\left(\sqrt{5w+2}\right)^{2}
Calculate \sqrt{3w+14} to the power of 2 and get 3w+14.
3w+14=5w+2
Calculate \sqrt{5w+2} to the power of 2 and get 5w+2.
3w+14-5w=2
Subtract 5w from both sides.
-2w+14=2
Combine 3w and -5w to get -2w.
-2w=2-14
Subtract 14 from both sides.
-2w=-12
Subtract 14 from 2 to get -12.
w=\frac{-12}{-2}
Divide both sides by -2.
w=6
Divide -12 by -2 to get 6.
\sqrt{3\times 6+14}=\sqrt{5\times 6+2}
Substitute 6 for w in the equation \sqrt{3w+14}=\sqrt{5w+2}.
4\times 2^{\frac{1}{2}}=4\times 2^{\frac{1}{2}}
Simplify. The value w=6 satisfies the equation.
w=6
Equation \sqrt{3w+14}=\sqrt{5w+2} has a unique solution.