Solve for w
w=6
Share
Copied to clipboard
\left(\sqrt{3w+14}\right)^{2}=\left(\sqrt{5w+2}\right)^{2}
Square both sides of the equation.
3w+14=\left(\sqrt{5w+2}\right)^{2}
Calculate \sqrt{3w+14} to the power of 2 and get 3w+14.
3w+14=5w+2
Calculate \sqrt{5w+2} to the power of 2 and get 5w+2.
3w+14-5w=2
Subtract 5w from both sides.
-2w+14=2
Combine 3w and -5w to get -2w.
-2w=2-14
Subtract 14 from both sides.
-2w=-12
Subtract 14 from 2 to get -12.
w=\frac{-12}{-2}
Divide both sides by -2.
w=6
Divide -12 by -2 to get 6.
\sqrt{3\times 6+14}=\sqrt{5\times 6+2}
Substitute 6 for w in the equation \sqrt{3w+14}=\sqrt{5w+2}.
4\times 2^{\frac{1}{2}}=4\times 2^{\frac{1}{2}}
Simplify. The value w=6 satisfies the equation.
w=6
Equation \sqrt{3w+14}=\sqrt{5w+2} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}