Skip to main content
Solve for y
Tick mark Image
Graph

Similar Problems from Web Search

Share

\sqrt{3}y+\frac{16y\left(8+4\sqrt{3}\right)}{\left(8-4\sqrt{3}\right)\left(8+4\sqrt{3}\right)}=120
Rationalize the denominator of \frac{16y}{8-4\sqrt{3}} by multiplying numerator and denominator by 8+4\sqrt{3}.
\sqrt{3}y+\frac{16y\left(8+4\sqrt{3}\right)}{8^{2}-\left(-4\sqrt{3}\right)^{2}}=120
Consider \left(8-4\sqrt{3}\right)\left(8+4\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\sqrt{3}y+\frac{16y\left(8+4\sqrt{3}\right)}{64-\left(-4\sqrt{3}\right)^{2}}=120
Calculate 8 to the power of 2 and get 64.
\sqrt{3}y+\frac{16y\left(8+4\sqrt{3}\right)}{64-\left(-4\right)^{2}\left(\sqrt{3}\right)^{2}}=120
Expand \left(-4\sqrt{3}\right)^{2}.
\sqrt{3}y+\frac{16y\left(8+4\sqrt{3}\right)}{64-16\left(\sqrt{3}\right)^{2}}=120
Calculate -4 to the power of 2 and get 16.
\sqrt{3}y+\frac{16y\left(8+4\sqrt{3}\right)}{64-16\times 3}=120
The square of \sqrt{3} is 3.
\sqrt{3}y+\frac{16y\left(8+4\sqrt{3}\right)}{64-48}=120
Multiply 16 and 3 to get 48.
\sqrt{3}y+\frac{16y\left(8+4\sqrt{3}\right)}{16}=120
Subtract 48 from 64 to get 16.
\sqrt{3}y+y\left(8+4\sqrt{3}\right)=120
Cancel out 16 and 16.
\sqrt{3}y+8y+4y\sqrt{3}=120
Use the distributive property to multiply y by 8+4\sqrt{3}.
5\sqrt{3}y+8y=120
Combine \sqrt{3}y and 4y\sqrt{3} to get 5\sqrt{3}y.
\left(5\sqrt{3}+8\right)y=120
Combine all terms containing y.
\frac{\left(5\sqrt{3}+8\right)y}{5\sqrt{3}+8}=\frac{120}{5\sqrt{3}+8}
Divide both sides by 5\sqrt{3}+8.
y=\frac{120}{5\sqrt{3}+8}
Dividing by 5\sqrt{3}+8 undoes the multiplication by 5\sqrt{3}+8.
y=\frac{600\sqrt{3}-960}{11}
Divide 120 by 5\sqrt{3}+8.