Solve for a
a=-\sqrt{3}b-b+2\sqrt{3}+3
Solve for b
b=\frac{-\sqrt{3}\left(a-1\right)+a+3}{2}
Share
Copied to clipboard
\sqrt{3}a-a=3+\sqrt{3}-2b
Subtract 2b from both sides.
\left(\sqrt{3}-1\right)a=3+\sqrt{3}-2b
Combine all terms containing a.
\left(\sqrt{3}-1\right)a=-2b+\sqrt{3}+3
The equation is in standard form.
\frac{\left(\sqrt{3}-1\right)a}{\sqrt{3}-1}=\frac{-2b+\sqrt{3}+3}{\sqrt{3}-1}
Divide both sides by \sqrt{3}-1.
a=\frac{-2b+\sqrt{3}+3}{\sqrt{3}-1}
Dividing by \sqrt{3}-1 undoes the multiplication by \sqrt{3}-1.
a=\frac{\left(\sqrt{3}+1\right)\left(-2b+\sqrt{3}+3\right)}{2}
Divide 3+\sqrt{3}-2b by \sqrt{3}-1.
-a+2b=3+\sqrt{3}-\sqrt{3}a
Subtract \sqrt{3}a from both sides.
2b=3+\sqrt{3}-\sqrt{3}a+a
Add a to both sides.
2b=-\sqrt{3}a+a+\sqrt{3}+3
Reorder the terms.
\frac{2b}{2}=\frac{-\sqrt{3}a+a+\sqrt{3}+3}{2}
Divide both sides by 2.
b=\frac{-\sqrt{3}a+a+\sqrt{3}+3}{2}
Dividing by 2 undoes the multiplication by 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}