Solve for m
m=\frac{2\sqrt{3}x}{3}
x\neq 0
Solve for x
x=\frac{\sqrt{3}m}{2}
m\neq 0
Graph
Share
Copied to clipboard
\sqrt{3}=\frac{x\times 2}{m}
Divide x by \frac{m}{2} by multiplying x by the reciprocal of \frac{m}{2}.
m\sqrt{3}=x\times 2
Variable m cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by m.
\sqrt{3}m=2x
The equation is in standard form.
\frac{\sqrt{3}m}{\sqrt{3}}=\frac{2x}{\sqrt{3}}
Divide both sides by \sqrt{3}.
m=\frac{2x}{\sqrt{3}}
Dividing by \sqrt{3} undoes the multiplication by \sqrt{3}.
m=\frac{2\sqrt{3}x}{3}
Divide 2x by \sqrt{3}.
m=\frac{2\sqrt{3}x}{3}\text{, }m\neq 0
Variable m cannot be equal to 0.
\sqrt{3}=\frac{x\times 2}{m}
Divide x by \frac{m}{2} by multiplying x by the reciprocal of \frac{m}{2}.
m\sqrt{3}=x\times 2
Multiply both sides of the equation by m.
x\times 2=m\sqrt{3}
Swap sides so that all variable terms are on the left hand side.
2x=\sqrt{3}m
The equation is in standard form.
\frac{2x}{2}=\frac{\sqrt{3}m}{2}
Divide both sides by 2.
x=\frac{\sqrt{3}m}{2}
Dividing by 2 undoes the multiplication by 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}