Evaluate
\sqrt{6}\approx 2.449489743
Share
Copied to clipboard
\sqrt{9\left(1-\frac{2}{3}\right)\times \frac{\left(\frac{5}{9}+\frac{1}{3}\right)\left(\frac{3}{4}-\frac{2}{5}-\frac{1}{8}\right)}{1-\frac{9}{10}}}
Calculate 3 to the power of 2 and get 9.
\sqrt{9\left(\frac{3}{3}-\frac{2}{3}\right)\times \frac{\left(\frac{5}{9}+\frac{1}{3}\right)\left(\frac{3}{4}-\frac{2}{5}-\frac{1}{8}\right)}{1-\frac{9}{10}}}
Convert 1 to fraction \frac{3}{3}.
\sqrt{9\times \frac{3-2}{3}\times \frac{\left(\frac{5}{9}+\frac{1}{3}\right)\left(\frac{3}{4}-\frac{2}{5}-\frac{1}{8}\right)}{1-\frac{9}{10}}}
Since \frac{3}{3} and \frac{2}{3} have the same denominator, subtract them by subtracting their numerators.
\sqrt{9\times \frac{1}{3}\times \frac{\left(\frac{5}{9}+\frac{1}{3}\right)\left(\frac{3}{4}-\frac{2}{5}-\frac{1}{8}\right)}{1-\frac{9}{10}}}
Subtract 2 from 3 to get 1.
\sqrt{\frac{9}{3}\times \frac{\left(\frac{5}{9}+\frac{1}{3}\right)\left(\frac{3}{4}-\frac{2}{5}-\frac{1}{8}\right)}{1-\frac{9}{10}}}
Multiply 9 and \frac{1}{3} to get \frac{9}{3}.
\sqrt{3\times \frac{\left(\frac{5}{9}+\frac{1}{3}\right)\left(\frac{3}{4}-\frac{2}{5}-\frac{1}{8}\right)}{1-\frac{9}{10}}}
Divide 9 by 3 to get 3.
\sqrt{3\times \frac{\left(\frac{5}{9}+\frac{3}{9}\right)\left(\frac{3}{4}-\frac{2}{5}-\frac{1}{8}\right)}{1-\frac{9}{10}}}
Least common multiple of 9 and 3 is 9. Convert \frac{5}{9} and \frac{1}{3} to fractions with denominator 9.
\sqrt{3\times \frac{\frac{5+3}{9}\left(\frac{3}{4}-\frac{2}{5}-\frac{1}{8}\right)}{1-\frac{9}{10}}}
Since \frac{5}{9} and \frac{3}{9} have the same denominator, add them by adding their numerators.
\sqrt{3\times \frac{\frac{8}{9}\left(\frac{3}{4}-\frac{2}{5}-\frac{1}{8}\right)}{1-\frac{9}{10}}}
Add 5 and 3 to get 8.
\sqrt{3\times \frac{\frac{8}{9}\left(\frac{15}{20}-\frac{8}{20}-\frac{1}{8}\right)}{1-\frac{9}{10}}}
Least common multiple of 4 and 5 is 20. Convert \frac{3}{4} and \frac{2}{5} to fractions with denominator 20.
\sqrt{3\times \frac{\frac{8}{9}\left(\frac{15-8}{20}-\frac{1}{8}\right)}{1-\frac{9}{10}}}
Since \frac{15}{20} and \frac{8}{20} have the same denominator, subtract them by subtracting their numerators.
\sqrt{3\times \frac{\frac{8}{9}\left(\frac{7}{20}-\frac{1}{8}\right)}{1-\frac{9}{10}}}
Subtract 8 from 15 to get 7.
\sqrt{3\times \frac{\frac{8}{9}\left(\frac{14}{40}-\frac{5}{40}\right)}{1-\frac{9}{10}}}
Least common multiple of 20 and 8 is 40. Convert \frac{7}{20} and \frac{1}{8} to fractions with denominator 40.
\sqrt{3\times \frac{\frac{8}{9}\times \frac{14-5}{40}}{1-\frac{9}{10}}}
Since \frac{14}{40} and \frac{5}{40} have the same denominator, subtract them by subtracting their numerators.
\sqrt{3\times \frac{\frac{8}{9}\times \frac{9}{40}}{1-\frac{9}{10}}}
Subtract 5 from 14 to get 9.
\sqrt{3\times \frac{\frac{8\times 9}{9\times 40}}{1-\frac{9}{10}}}
Multiply \frac{8}{9} times \frac{9}{40} by multiplying numerator times numerator and denominator times denominator.
\sqrt{3\times \frac{\frac{8}{40}}{1-\frac{9}{10}}}
Cancel out 9 in both numerator and denominator.
\sqrt{3\times \frac{\frac{1}{5}}{1-\frac{9}{10}}}
Reduce the fraction \frac{8}{40} to lowest terms by extracting and canceling out 8.
\sqrt{3\times \frac{\frac{1}{5}}{\frac{10}{10}-\frac{9}{10}}}
Convert 1 to fraction \frac{10}{10}.
\sqrt{3\times \frac{\frac{1}{5}}{\frac{10-9}{10}}}
Since \frac{10}{10} and \frac{9}{10} have the same denominator, subtract them by subtracting their numerators.
\sqrt{3\times \frac{\frac{1}{5}}{\frac{1}{10}}}
Subtract 9 from 10 to get 1.
\sqrt{3\times \frac{1}{5}\times 10}
Divide \frac{1}{5} by \frac{1}{10} by multiplying \frac{1}{5} by the reciprocal of \frac{1}{10}.
\sqrt{3\times \frac{10}{5}}
Multiply \frac{1}{5} and 10 to get \frac{10}{5}.
\sqrt{3\times 2}
Divide 10 by 5 to get 2.
\sqrt{6}
Multiply 3 and 2 to get 6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}