Solve for a
a = \frac{11}{5} = 2\frac{1}{5} = 2.2
Share
Copied to clipboard
\sqrt{3+a^{2}}=5-a
Subtract a from both sides of the equation.
\left(\sqrt{3+a^{2}}\right)^{2}=\left(5-a\right)^{2}
Square both sides of the equation.
3+a^{2}=\left(5-a\right)^{2}
Calculate \sqrt{3+a^{2}} to the power of 2 and get 3+a^{2}.
3+a^{2}=25-10a+a^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(5-a\right)^{2}.
3+a^{2}+10a=25+a^{2}
Add 10a to both sides.
3+a^{2}+10a-a^{2}=25
Subtract a^{2} from both sides.
3+10a=25
Combine a^{2} and -a^{2} to get 0.
10a=25-3
Subtract 3 from both sides.
10a=22
Subtract 3 from 25 to get 22.
a=\frac{22}{10}
Divide both sides by 10.
a=\frac{11}{5}
Reduce the fraction \frac{22}{10} to lowest terms by extracting and canceling out 2.
\sqrt{3+\left(\frac{11}{5}\right)^{2}}+\frac{11}{5}=5
Substitute \frac{11}{5} for a in the equation \sqrt{3+a^{2}}+a=5.
5=5
Simplify. The value a=\frac{11}{5} satisfies the equation.
a=\frac{11}{5}
Equation \sqrt{a^{2}+3}=5-a has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}