Skip to main content
Solve for a
Tick mark Image

Similar Problems from Web Search

Share

\sqrt{3+a^{2}}=5-a
Subtract a from both sides of the equation.
\left(\sqrt{3+a^{2}}\right)^{2}=\left(5-a\right)^{2}
Square both sides of the equation.
3+a^{2}=\left(5-a\right)^{2}
Calculate \sqrt{3+a^{2}} to the power of 2 and get 3+a^{2}.
3+a^{2}=25-10a+a^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(5-a\right)^{2}.
3+a^{2}+10a=25+a^{2}
Add 10a to both sides.
3+a^{2}+10a-a^{2}=25
Subtract a^{2} from both sides.
3+10a=25
Combine a^{2} and -a^{2} to get 0.
10a=25-3
Subtract 3 from both sides.
10a=22
Subtract 3 from 25 to get 22.
a=\frac{22}{10}
Divide both sides by 10.
a=\frac{11}{5}
Reduce the fraction \frac{22}{10} to lowest terms by extracting and canceling out 2.
\sqrt{3+\left(\frac{11}{5}\right)^{2}}+\frac{11}{5}=5
Substitute \frac{11}{5} for a in the equation \sqrt{3+a^{2}}+a=5.
5=5
Simplify. The value a=\frac{11}{5} satisfies the equation.
a=\frac{11}{5}
Equation \sqrt{a^{2}+3}=5-a has a unique solution.