Evaluate
-1
Factor
-1
Share
Copied to clipboard
3\sqrt{3}\sqrt{\frac{1}{3}}-\left(\sqrt{7}+\sqrt{3}\right)\left(\sqrt{7}-\sqrt{3}\right)
Factor 27=3^{2}\times 3. Rewrite the square root of the product \sqrt{3^{2}\times 3} as the product of square roots \sqrt{3^{2}}\sqrt{3}. Take the square root of 3^{2}.
3\sqrt{3}\times \frac{\sqrt{1}}{\sqrt{3}}-\left(\sqrt{7}+\sqrt{3}\right)\left(\sqrt{7}-\sqrt{3}\right)
Rewrite the square root of the division \sqrt{\frac{1}{3}} as the division of square roots \frac{\sqrt{1}}{\sqrt{3}}.
3\sqrt{3}\times \frac{1}{\sqrt{3}}-\left(\sqrt{7}+\sqrt{3}\right)\left(\sqrt{7}-\sqrt{3}\right)
Calculate the square root of 1 and get 1.
3\sqrt{3}\times \frac{\sqrt{3}}{\left(\sqrt{3}\right)^{2}}-\left(\sqrt{7}+\sqrt{3}\right)\left(\sqrt{7}-\sqrt{3}\right)
Rationalize the denominator of \frac{1}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
3\sqrt{3}\times \frac{\sqrt{3}}{3}-\left(\sqrt{7}+\sqrt{3}\right)\left(\sqrt{7}-\sqrt{3}\right)
The square of \sqrt{3} is 3.
\sqrt{3}\sqrt{3}-\left(\sqrt{7}+\sqrt{3}\right)\left(\sqrt{7}-\sqrt{3}\right)
Cancel out 3 and 3.
3-\left(\sqrt{7}+\sqrt{3}\right)\left(\sqrt{7}-\sqrt{3}\right)
Multiply \sqrt{3} and \sqrt{3} to get 3.
3-\left(\left(\sqrt{7}\right)^{2}-\left(\sqrt{3}\right)^{2}\right)
Consider \left(\sqrt{7}+\sqrt{3}\right)\left(\sqrt{7}-\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
3-\left(7-\left(\sqrt{3}\right)^{2}\right)
The square of \sqrt{7} is 7.
3-\left(7-3\right)
The square of \sqrt{3} is 3.
3-4
Subtract 3 from 7 to get 4.
-1
Subtract 4 from 3 to get -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}