Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\sqrt{25x^{2}-50}=\sqrt{13}+\sqrt{16x^{2}-32}
Subtract -\sqrt{16x^{2}-32} from both sides of the equation.
\left(\sqrt{25x^{2}-50}\right)^{2}=\left(\sqrt{13}+\sqrt{16x^{2}-32}\right)^{2}
Square both sides of the equation.
25x^{2}-50=\left(\sqrt{13}+\sqrt{16x^{2}-32}\right)^{2}
Calculate \sqrt{25x^{2}-50} to the power of 2 and get 25x^{2}-50.
25x^{2}-50=\left(\sqrt{13}\right)^{2}+2\sqrt{13}\sqrt{16x^{2}-32}+\left(\sqrt{16x^{2}-32}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\sqrt{13}+\sqrt{16x^{2}-32}\right)^{2}.
25x^{2}-50=13+2\sqrt{13}\sqrt{16x^{2}-32}+\left(\sqrt{16x^{2}-32}\right)^{2}
The square of \sqrt{13} is 13.
25x^{2}-50=13+2\sqrt{13}\sqrt{16x^{2}-32}+16x^{2}-32
Calculate \sqrt{16x^{2}-32} to the power of 2 and get 16x^{2}-32.
25x^{2}-50=-19+2\sqrt{13}\sqrt{16x^{2}-32}+16x^{2}
Subtract 32 from 13 to get -19.
25x^{2}-50-\left(-19+16x^{2}\right)=2\sqrt{13}\sqrt{16x^{2}-32}
Subtract -19+16x^{2} from both sides of the equation.
25x^{2}-50+19-16x^{2}=2\sqrt{13}\sqrt{16x^{2}-32}
To find the opposite of -19+16x^{2}, find the opposite of each term.
25x^{2}-31-16x^{2}=2\sqrt{13}\sqrt{16x^{2}-32}
Add -50 and 19 to get -31.
9x^{2}-31=2\sqrt{13}\sqrt{16x^{2}-32}
Combine 25x^{2} and -16x^{2} to get 9x^{2}.
\left(9x^{2}-31\right)^{2}=\left(2\sqrt{13}\sqrt{16x^{2}-32}\right)^{2}
Square both sides of the equation.
81\left(x^{2}\right)^{2}-558x^{2}+961=\left(2\sqrt{13}\sqrt{16x^{2}-32}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(9x^{2}-31\right)^{2}.
81x^{4}-558x^{2}+961=\left(2\sqrt{13}\sqrt{16x^{2}-32}\right)^{2}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
81x^{4}-558x^{2}+961=2^{2}\left(\sqrt{13}\right)^{2}\left(\sqrt{16x^{2}-32}\right)^{2}
Expand \left(2\sqrt{13}\sqrt{16x^{2}-32}\right)^{2}.
81x^{4}-558x^{2}+961=4\left(\sqrt{13}\right)^{2}\left(\sqrt{16x^{2}-32}\right)^{2}
Calculate 2 to the power of 2 and get 4.
81x^{4}-558x^{2}+961=4\times 13\left(\sqrt{16x^{2}-32}\right)^{2}
The square of \sqrt{13} is 13.
81x^{4}-558x^{2}+961=52\left(\sqrt{16x^{2}-32}\right)^{2}
Multiply 4 and 13 to get 52.
81x^{4}-558x^{2}+961=52\left(16x^{2}-32\right)
Calculate \sqrt{16x^{2}-32} to the power of 2 and get 16x^{2}-32.
81x^{4}-558x^{2}+961=832x^{2}-1664
Use the distributive property to multiply 52 by 16x^{2}-32.
81x^{4}-558x^{2}+961-832x^{2}=-1664
Subtract 832x^{2} from both sides.
81x^{4}-1390x^{2}+961=-1664
Combine -558x^{2} and -832x^{2} to get -1390x^{2}.
81x^{4}-1390x^{2}+961+1664=0
Add 1664 to both sides.
81x^{4}-1390x^{2}+2625=0
Add 961 and 1664 to get 2625.
81t^{2}-1390t+2625=0
Substitute t for x^{2}.
t=\frac{-\left(-1390\right)±\sqrt{\left(-1390\right)^{2}-4\times 81\times 2625}}{2\times 81}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 81 for a, -1390 for b, and 2625 for c in the quadratic formula.
t=\frac{1390±1040}{162}
Do the calculations.
t=15 t=\frac{175}{81}
Solve the equation t=\frac{1390±1040}{162} when ± is plus and when ± is minus.
x=\sqrt{15} x=-\sqrt{15} x=\frac{5\sqrt{7}}{9} x=-\frac{5\sqrt{7}}{9}
Since x=t^{2}, the solutions are obtained by evaluating x=±\sqrt{t} for each t.
\sqrt{25\left(\sqrt{15}\right)^{2}-50}-\sqrt{16\left(\sqrt{15}\right)^{2}-32}=\sqrt{13}
Substitute \sqrt{15} for x in the equation \sqrt{25x^{2}-50}-\sqrt{16x^{2}-32}=\sqrt{13}.
13^{\frac{1}{2}}=13^{\frac{1}{2}}
Simplify. The value x=\sqrt{15} satisfies the equation.
\sqrt{25\left(-\sqrt{15}\right)^{2}-50}-\sqrt{16\left(-\sqrt{15}\right)^{2}-32}=\sqrt{13}
Substitute -\sqrt{15} for x in the equation \sqrt{25x^{2}-50}-\sqrt{16x^{2}-32}=\sqrt{13}.
13^{\frac{1}{2}}=13^{\frac{1}{2}}
Simplify. The value x=-\sqrt{15} satisfies the equation.
\sqrt{25\times \left(\frac{5\sqrt{7}}{9}\right)^{2}-50}-\sqrt{16\times \left(\frac{5\sqrt{7}}{9}\right)^{2}-32}=\sqrt{13}
Substitute \frac{5\sqrt{7}}{9} for x in the equation \sqrt{25x^{2}-50}-\sqrt{16x^{2}-32}=\sqrt{13}.
\frac{1}{9}\times 13^{\frac{1}{2}}=13^{\frac{1}{2}}
Simplify. The value x=\frac{5\sqrt{7}}{9} does not satisfy the equation.
\sqrt{25\left(-\frac{5\sqrt{7}}{9}\right)^{2}-50}-\sqrt{16\left(-\frac{5\sqrt{7}}{9}\right)^{2}-32}=\sqrt{13}
Substitute -\frac{5\sqrt{7}}{9} for x in the equation \sqrt{25x^{2}-50}-\sqrt{16x^{2}-32}=\sqrt{13}.
\frac{1}{9}\times 13^{\frac{1}{2}}=13^{\frac{1}{2}}
Simplify. The value x=-\frac{5\sqrt{7}}{9} does not satisfy the equation.
\sqrt{25\left(\sqrt{15}\right)^{2}-50}-\sqrt{16\left(\sqrt{15}\right)^{2}-32}=\sqrt{13}
Substitute \sqrt{15} for x in the equation \sqrt{25x^{2}-50}-\sqrt{16x^{2}-32}=\sqrt{13}.
13^{\frac{1}{2}}=13^{\frac{1}{2}}
Simplify. The value x=\sqrt{15} satisfies the equation.
\sqrt{25\left(-\sqrt{15}\right)^{2}-50}-\sqrt{16\left(-\sqrt{15}\right)^{2}-32}=\sqrt{13}
Substitute -\sqrt{15} for x in the equation \sqrt{25x^{2}-50}-\sqrt{16x^{2}-32}=\sqrt{13}.
13^{\frac{1}{2}}=13^{\frac{1}{2}}
Simplify. The value x=-\sqrt{15} satisfies the equation.
x=\sqrt{15} x=-\sqrt{15}
List all solutions of \sqrt{25x^{2}-50}=\sqrt{16x^{2}-32}+\sqrt{13}.