Evaluate
14\sqrt{5}\approx 31.304951685
Share
Copied to clipboard
\frac{2\sqrt{5}}{10^{-1}}-\frac{50}{\sqrt{5}}+\sqrt{500}-4^{-1}\sqrt{2880}
Factor 20=2^{2}\times 5. Rewrite the square root of the product \sqrt{2^{2}\times 5} as the product of square roots \sqrt{2^{2}}\sqrt{5}. Take the square root of 2^{2}.
\frac{2\sqrt{5}}{\frac{1}{10}}-\frac{50}{\sqrt{5}}+\sqrt{500}-4^{-1}\sqrt{2880}
Calculate 10 to the power of -1 and get \frac{1}{10}.
2\sqrt{5}\times 10-\frac{50}{\sqrt{5}}+\sqrt{500}-4^{-1}\sqrt{2880}
Divide 2\sqrt{5} by \frac{1}{10} by multiplying 2\sqrt{5} by the reciprocal of \frac{1}{10}.
20\sqrt{5}-\frac{50}{\sqrt{5}}+\sqrt{500}-4^{-1}\sqrt{2880}
Multiply 2 and 10 to get 20.
20\sqrt{5}-\frac{50\sqrt{5}}{\left(\sqrt{5}\right)^{2}}+\sqrt{500}-4^{-1}\sqrt{2880}
Rationalize the denominator of \frac{50}{\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
20\sqrt{5}-\frac{50\sqrt{5}}{5}+\sqrt{500}-4^{-1}\sqrt{2880}
The square of \sqrt{5} is 5.
20\sqrt{5}-10\sqrt{5}+\sqrt{500}-4^{-1}\sqrt{2880}
Divide 50\sqrt{5} by 5 to get 10\sqrt{5}.
20\sqrt{5}-10\sqrt{5}+10\sqrt{5}-4^{-1}\sqrt{2880}
Factor 500=10^{2}\times 5. Rewrite the square root of the product \sqrt{10^{2}\times 5} as the product of square roots \sqrt{10^{2}}\sqrt{5}. Take the square root of 10^{2}.
30\sqrt{5}-10\sqrt{5}-4^{-1}\sqrt{2880}
Combine 20\sqrt{5} and 10\sqrt{5} to get 30\sqrt{5}.
30\sqrt{5}-10\sqrt{5}-\frac{1}{4}\sqrt{2880}
Calculate 4 to the power of -1 and get \frac{1}{4}.
30\sqrt{5}-10\sqrt{5}-\frac{1}{4}\times 24\sqrt{5}
Factor 2880=24^{2}\times 5. Rewrite the square root of the product \sqrt{24^{2}\times 5} as the product of square roots \sqrt{24^{2}}\sqrt{5}. Take the square root of 24^{2}.
30\sqrt{5}-10\sqrt{5}-6\sqrt{5}
Multiply \frac{1}{4} and 24 to get 6.
24\sqrt{5}-10\sqrt{5}
Combine 30\sqrt{5} and -6\sqrt{5} to get 24\sqrt{5}.
14\sqrt{5}
Combine 24\sqrt{5} and -10\sqrt{5} to get 14\sqrt{5}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}