Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(\sqrt{2x-9}\right)^{2}=\left(5-\sqrt{x-3}\right)^{2}
Square both sides of the equation.
2x-9=\left(5-\sqrt{x-3}\right)^{2}
Calculate \sqrt{2x-9} to the power of 2 and get 2x-9.
2x-9=25-10\sqrt{x-3}+\left(\sqrt{x-3}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(5-\sqrt{x-3}\right)^{2}.
2x-9=25-10\sqrt{x-3}+x-3
Calculate \sqrt{x-3} to the power of 2 and get x-3.
2x-9=22-10\sqrt{x-3}+x
Subtract 3 from 25 to get 22.
2x-9-\left(22+x\right)=-10\sqrt{x-3}
Subtract 22+x from both sides of the equation.
2x-9-22-x=-10\sqrt{x-3}
To find the opposite of 22+x, find the opposite of each term.
2x-31-x=-10\sqrt{x-3}
Subtract 22 from -9 to get -31.
x-31=-10\sqrt{x-3}
Combine 2x and -x to get x.
\left(x-31\right)^{2}=\left(-10\sqrt{x-3}\right)^{2}
Square both sides of the equation.
x^{2}-62x+961=\left(-10\sqrt{x-3}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-31\right)^{2}.
x^{2}-62x+961=\left(-10\right)^{2}\left(\sqrt{x-3}\right)^{2}
Expand \left(-10\sqrt{x-3}\right)^{2}.
x^{2}-62x+961=100\left(\sqrt{x-3}\right)^{2}
Calculate -10 to the power of 2 and get 100.
x^{2}-62x+961=100\left(x-3\right)
Calculate \sqrt{x-3} to the power of 2 and get x-3.
x^{2}-62x+961=100x-300
Use the distributive property to multiply 100 by x-3.
x^{2}-62x+961-100x=-300
Subtract 100x from both sides.
x^{2}-162x+961=-300
Combine -62x and -100x to get -162x.
x^{2}-162x+961+300=0
Add 300 to both sides.
x^{2}-162x+1261=0
Add 961 and 300 to get 1261.
x=\frac{-\left(-162\right)±\sqrt{\left(-162\right)^{2}-4\times 1261}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -162 for b, and 1261 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-162\right)±\sqrt{26244-4\times 1261}}{2}
Square -162.
x=\frac{-\left(-162\right)±\sqrt{26244-5044}}{2}
Multiply -4 times 1261.
x=\frac{-\left(-162\right)±\sqrt{21200}}{2}
Add 26244 to -5044.
x=\frac{-\left(-162\right)±20\sqrt{53}}{2}
Take the square root of 21200.
x=\frac{162±20\sqrt{53}}{2}
The opposite of -162 is 162.
x=\frac{20\sqrt{53}+162}{2}
Now solve the equation x=\frac{162±20\sqrt{53}}{2} when ± is plus. Add 162 to 20\sqrt{53}.
x=10\sqrt{53}+81
Divide 162+20\sqrt{53} by 2.
x=\frac{162-20\sqrt{53}}{2}
Now solve the equation x=\frac{162±20\sqrt{53}}{2} when ± is minus. Subtract 20\sqrt{53} from 162.
x=81-10\sqrt{53}
Divide 162-20\sqrt{53} by 2.
x=10\sqrt{53}+81 x=81-10\sqrt{53}
The equation is now solved.
\sqrt{2\left(10\sqrt{53}+81\right)-9}=5-\sqrt{10\sqrt{53}+81-3}
Substitute 10\sqrt{53}+81 for x in the equation \sqrt{2x-9}=5-\sqrt{x-3}.
10+53^{\frac{1}{2}}=-53^{\frac{1}{2}}
Simplify. The value x=10\sqrt{53}+81 does not satisfy the equation because the left and the right hand side have opposite signs.
\sqrt{2\left(81-10\sqrt{53}\right)-9}=5-\sqrt{81-10\sqrt{53}-3}
Substitute 81-10\sqrt{53} for x in the equation \sqrt{2x-9}=5-\sqrt{x-3}.
10-53^{\frac{1}{2}}=10-53^{\frac{1}{2}}
Simplify. The value x=81-10\sqrt{53} satisfies the equation.
x=81-10\sqrt{53}
Equation \sqrt{2x-9}=-\sqrt{x-3}+5 has a unique solution.