Solve for x
x=81-3\sqrt{17}\approx 68.630683123
Graph
Share
Copied to clipboard
\sqrt{2x-8}=80-x
Subtract x from both sides of the equation.
\left(\sqrt{2x-8}\right)^{2}=\left(80-x\right)^{2}
Square both sides of the equation.
2x-8=\left(80-x\right)^{2}
Calculate \sqrt{2x-8} to the power of 2 and get 2x-8.
2x-8=6400-160x+x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(80-x\right)^{2}.
2x-8-6400=-160x+x^{2}
Subtract 6400 from both sides.
2x-6408=-160x+x^{2}
Subtract 6400 from -8 to get -6408.
2x-6408+160x=x^{2}
Add 160x to both sides.
162x-6408=x^{2}
Combine 2x and 160x to get 162x.
162x-6408-x^{2}=0
Subtract x^{2} from both sides.
-x^{2}+162x-6408=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-162±\sqrt{162^{2}-4\left(-1\right)\left(-6408\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 162 for b, and -6408 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-162±\sqrt{26244-4\left(-1\right)\left(-6408\right)}}{2\left(-1\right)}
Square 162.
x=\frac{-162±\sqrt{26244+4\left(-6408\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-162±\sqrt{26244-25632}}{2\left(-1\right)}
Multiply 4 times -6408.
x=\frac{-162±\sqrt{612}}{2\left(-1\right)}
Add 26244 to -25632.
x=\frac{-162±6\sqrt{17}}{2\left(-1\right)}
Take the square root of 612.
x=\frac{-162±6\sqrt{17}}{-2}
Multiply 2 times -1.
x=\frac{6\sqrt{17}-162}{-2}
Now solve the equation x=\frac{-162±6\sqrt{17}}{-2} when ± is plus. Add -162 to 6\sqrt{17}.
x=81-3\sqrt{17}
Divide -162+6\sqrt{17} by -2.
x=\frac{-6\sqrt{17}-162}{-2}
Now solve the equation x=\frac{-162±6\sqrt{17}}{-2} when ± is minus. Subtract 6\sqrt{17} from -162.
x=3\sqrt{17}+81
Divide -162-6\sqrt{17} by -2.
x=81-3\sqrt{17} x=3\sqrt{17}+81
The equation is now solved.
\sqrt{2\left(81-3\sqrt{17}\right)-8}+81-3\sqrt{17}=80
Substitute 81-3\sqrt{17} for x in the equation \sqrt{2x-8}+x=80.
80=80
Simplify. The value x=81-3\sqrt{17} satisfies the equation.
\sqrt{2\left(3\sqrt{17}+81\right)-8}+3\sqrt{17}+81=80
Substitute 3\sqrt{17}+81 for x in the equation \sqrt{2x-8}+x=80.
6\times 17^{\frac{1}{2}}+82=80
Simplify. The value x=3\sqrt{17}+81 does not satisfy the equation.
x=81-3\sqrt{17}
Equation \sqrt{2x-8}=80-x has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}