Solve for x (complex solution)
x=-2+2\sqrt{15}i\approx -2+7.745966692i
Graph
Share
Copied to clipboard
\left(\sqrt{2x-55}\right)^{2}=\left(x+3\right)^{2}
Square both sides of the equation.
2x-55=\left(x+3\right)^{2}
Calculate \sqrt{2x-55} to the power of 2 and get 2x-55.
2x-55=x^{2}+6x+9
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+3\right)^{2}.
2x-55-x^{2}=6x+9
Subtract x^{2} from both sides.
2x-55-x^{2}-6x=9
Subtract 6x from both sides.
-4x-55-x^{2}=9
Combine 2x and -6x to get -4x.
-4x-55-x^{2}-9=0
Subtract 9 from both sides.
-4x-64-x^{2}=0
Subtract 9 from -55 to get -64.
-x^{2}-4x-64=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\left(-1\right)\left(-64\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, -4 for b, and -64 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-4\right)±\sqrt{16-4\left(-1\right)\left(-64\right)}}{2\left(-1\right)}
Square -4.
x=\frac{-\left(-4\right)±\sqrt{16+4\left(-64\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-\left(-4\right)±\sqrt{16-256}}{2\left(-1\right)}
Multiply 4 times -64.
x=\frac{-\left(-4\right)±\sqrt{-240}}{2\left(-1\right)}
Add 16 to -256.
x=\frac{-\left(-4\right)±4\sqrt{15}i}{2\left(-1\right)}
Take the square root of -240.
x=\frac{4±4\sqrt{15}i}{2\left(-1\right)}
The opposite of -4 is 4.
x=\frac{4±4\sqrt{15}i}{-2}
Multiply 2 times -1.
x=\frac{4+4\sqrt{15}i}{-2}
Now solve the equation x=\frac{4±4\sqrt{15}i}{-2} when ± is plus. Add 4 to 4i\sqrt{15}.
x=-2\sqrt{15}i-2
Divide 4+4i\sqrt{15} by -2.
x=\frac{-4\sqrt{15}i+4}{-2}
Now solve the equation x=\frac{4±4\sqrt{15}i}{-2} when ± is minus. Subtract 4i\sqrt{15} from 4.
x=-2+2\sqrt{15}i
Divide 4-4i\sqrt{15} by -2.
x=-2\sqrt{15}i-2 x=-2+2\sqrt{15}i
The equation is now solved.
\sqrt{2\left(-2\sqrt{15}i-2\right)-55}=-2\sqrt{15}i-2+3
Substitute -2\sqrt{15}i-2 for x in the equation \sqrt{2x-55}=x+3.
-\left(1-2i\times 15^{\frac{1}{2}}\right)=-2i\times 15^{\frac{1}{2}}+1
Simplify. The value x=-2\sqrt{15}i-2 does not satisfy the equation.
\sqrt{2\left(-2+2\sqrt{15}i\right)-55}=-2+2\sqrt{15}i+3
Substitute -2+2\sqrt{15}i for x in the equation \sqrt{2x-55}=x+3.
1+2i\times 15^{\frac{1}{2}}=1+2i\times 15^{\frac{1}{2}}
Simplify. The value x=-2+2\sqrt{15}i satisfies the equation.
x=-2+2\sqrt{15}i
Equation \sqrt{2x-55}=x+3 has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}