Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\sqrt{2x+9}=-\left(-\sqrt{x-4}-3\right)
Subtract -\sqrt{x-4}-3 from both sides of the equation.
\sqrt{2x+9}=-\left(-\sqrt{x-4}\right)-\left(-3\right)
To find the opposite of -\sqrt{x-4}-3, find the opposite of each term.
\sqrt{2x+9}=\sqrt{x-4}-\left(-3\right)
The opposite of -\sqrt{x-4} is \sqrt{x-4}.
\sqrt{2x+9}=\sqrt{x-4}+3
The opposite of -3 is 3.
\left(\sqrt{2x+9}\right)^{2}=\left(\sqrt{x-4}+3\right)^{2}
Square both sides of the equation.
2x+9=\left(\sqrt{x-4}+3\right)^{2}
Calculate \sqrt{2x+9} to the power of 2 and get 2x+9.
2x+9=\left(\sqrt{x-4}\right)^{2}+6\sqrt{x-4}+9
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\sqrt{x-4}+3\right)^{2}.
2x+9=x-4+6\sqrt{x-4}+9
Calculate \sqrt{x-4} to the power of 2 and get x-4.
2x+9=x+5+6\sqrt{x-4}
Add -4 and 9 to get 5.
2x+9-\left(x+5\right)=6\sqrt{x-4}
Subtract x+5 from both sides of the equation.
2x+9-x-5=6\sqrt{x-4}
To find the opposite of x+5, find the opposite of each term.
x+9-5=6\sqrt{x-4}
Combine 2x and -x to get x.
x+4=6\sqrt{x-4}
Subtract 5 from 9 to get 4.
\left(x+4\right)^{2}=\left(6\sqrt{x-4}\right)^{2}
Square both sides of the equation.
x^{2}+8x+16=\left(6\sqrt{x-4}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+4\right)^{2}.
x^{2}+8x+16=6^{2}\left(\sqrt{x-4}\right)^{2}
Expand \left(6\sqrt{x-4}\right)^{2}.
x^{2}+8x+16=36\left(\sqrt{x-4}\right)^{2}
Calculate 6 to the power of 2 and get 36.
x^{2}+8x+16=36\left(x-4\right)
Calculate \sqrt{x-4} to the power of 2 and get x-4.
x^{2}+8x+16=36x-144
Use the distributive property to multiply 36 by x-4.
x^{2}+8x+16-36x=-144
Subtract 36x from both sides.
x^{2}-28x+16=-144
Combine 8x and -36x to get -28x.
x^{2}-28x+16+144=0
Add 144 to both sides.
x^{2}-28x+160=0
Add 16 and 144 to get 160.
a+b=-28 ab=160
To solve the equation, factor x^{2}-28x+160 using formula x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). To find a and b, set up a system to be solved.
-1,-160 -2,-80 -4,-40 -5,-32 -8,-20 -10,-16
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 160.
-1-160=-161 -2-80=-82 -4-40=-44 -5-32=-37 -8-20=-28 -10-16=-26
Calculate the sum for each pair.
a=-20 b=-8
The solution is the pair that gives sum -28.
\left(x-20\right)\left(x-8\right)
Rewrite factored expression \left(x+a\right)\left(x+b\right) using the obtained values.
x=20 x=8
To find equation solutions, solve x-20=0 and x-8=0.
\sqrt{2\times 20+9}-\sqrt{20-4}-3=0
Substitute 20 for x in the equation \sqrt{2x+9}-\sqrt{x-4}-3=0.
0=0
Simplify. The value x=20 satisfies the equation.
\sqrt{2\times 8+9}-\sqrt{8-4}-3=0
Substitute 8 for x in the equation \sqrt{2x+9}-\sqrt{x-4}-3=0.
0=0
Simplify. The value x=8 satisfies the equation.
x=20 x=8
List all solutions of \sqrt{2x+9}=\sqrt{x-4}+3.