Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\sqrt{2x+9}=4-\sqrt{1-2x}
Subtract \sqrt{1-2x} from both sides of the equation.
\left(\sqrt{2x+9}\right)^{2}=\left(4-\sqrt{1-2x}\right)^{2}
Square both sides of the equation.
2x+9=\left(4-\sqrt{1-2x}\right)^{2}
Calculate \sqrt{2x+9} to the power of 2 and get 2x+9.
2x+9=16-8\sqrt{1-2x}+\left(\sqrt{1-2x}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(4-\sqrt{1-2x}\right)^{2}.
2x+9=16-8\sqrt{1-2x}+1-2x
Calculate \sqrt{1-2x} to the power of 2 and get 1-2x.
2x+9=17-8\sqrt{1-2x}-2x
Add 16 and 1 to get 17.
2x+9-\left(17-2x\right)=-8\sqrt{1-2x}
Subtract 17-2x from both sides of the equation.
2x+9-17+2x=-8\sqrt{1-2x}
To find the opposite of 17-2x, find the opposite of each term.
2x-8+2x=-8\sqrt{1-2x}
Subtract 17 from 9 to get -8.
4x-8=-8\sqrt{1-2x}
Combine 2x and 2x to get 4x.
\left(4x-8\right)^{2}=\left(-8\sqrt{1-2x}\right)^{2}
Square both sides of the equation.
16x^{2}-64x+64=\left(-8\sqrt{1-2x}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(4x-8\right)^{2}.
16x^{2}-64x+64=\left(-8\right)^{2}\left(\sqrt{1-2x}\right)^{2}
Expand \left(-8\sqrt{1-2x}\right)^{2}.
16x^{2}-64x+64=64\left(\sqrt{1-2x}\right)^{2}
Calculate -8 to the power of 2 and get 64.
16x^{2}-64x+64=64\left(1-2x\right)
Calculate \sqrt{1-2x} to the power of 2 and get 1-2x.
16x^{2}-64x+64=64-128x
Use the distributive property to multiply 64 by 1-2x.
16x^{2}-64x+64-64=-128x
Subtract 64 from both sides.
16x^{2}-64x=-128x
Subtract 64 from 64 to get 0.
16x^{2}-64x+128x=0
Add 128x to both sides.
16x^{2}+64x=0
Combine -64x and 128x to get 64x.
x\left(16x+64\right)=0
Factor out x.
x=0 x=-4
To find equation solutions, solve x=0 and 16x+64=0.
\sqrt{2\times 0+9}+\sqrt{1-2\times 0}=4
Substitute 0 for x in the equation \sqrt{2x+9}+\sqrt{1-2x}=4.
4=4
Simplify. The value x=0 satisfies the equation.
\sqrt{2\left(-4\right)+9}+\sqrt{1-2\left(-4\right)}=4
Substitute -4 for x in the equation \sqrt{2x+9}+\sqrt{1-2x}=4.
4=4
Simplify. The value x=-4 satisfies the equation.
x=0 x=-4
List all solutions of \sqrt{2x+9}=-\sqrt{1-2x}+4.