Solve for x
x=28
x=4
Graph
Share
Copied to clipboard
\left(\sqrt{2x+8}\right)^{2}=\left(3+\sqrt{x-3}\right)^{2}
Square both sides of the equation.
2x+8=\left(3+\sqrt{x-3}\right)^{2}
Calculate \sqrt{2x+8} to the power of 2 and get 2x+8.
2x+8=9+6\sqrt{x-3}+\left(\sqrt{x-3}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(3+\sqrt{x-3}\right)^{2}.
2x+8=9+6\sqrt{x-3}+x-3
Calculate \sqrt{x-3} to the power of 2 and get x-3.
2x+8=6+6\sqrt{x-3}+x
Subtract 3 from 9 to get 6.
2x+8-\left(6+x\right)=6\sqrt{x-3}
Subtract 6+x from both sides of the equation.
2x+8-6-x=6\sqrt{x-3}
To find the opposite of 6+x, find the opposite of each term.
2x+2-x=6\sqrt{x-3}
Subtract 6 from 8 to get 2.
x+2=6\sqrt{x-3}
Combine 2x and -x to get x.
\left(x+2\right)^{2}=\left(6\sqrt{x-3}\right)^{2}
Square both sides of the equation.
x^{2}+4x+4=\left(6\sqrt{x-3}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+2\right)^{2}.
x^{2}+4x+4=6^{2}\left(\sqrt{x-3}\right)^{2}
Expand \left(6\sqrt{x-3}\right)^{2}.
x^{2}+4x+4=36\left(\sqrt{x-3}\right)^{2}
Calculate 6 to the power of 2 and get 36.
x^{2}+4x+4=36\left(x-3\right)
Calculate \sqrt{x-3} to the power of 2 and get x-3.
x^{2}+4x+4=36x-108
Use the distributive property to multiply 36 by x-3.
x^{2}+4x+4-36x=-108
Subtract 36x from both sides.
x^{2}-32x+4=-108
Combine 4x and -36x to get -32x.
x^{2}-32x+4+108=0
Add 108 to both sides.
x^{2}-32x+112=0
Add 4 and 108 to get 112.
a+b=-32 ab=112
To solve the equation, factor x^{2}-32x+112 using formula x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). To find a and b, set up a system to be solved.
-1,-112 -2,-56 -4,-28 -7,-16 -8,-14
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 112.
-1-112=-113 -2-56=-58 -4-28=-32 -7-16=-23 -8-14=-22
Calculate the sum for each pair.
a=-28 b=-4
The solution is the pair that gives sum -32.
\left(x-28\right)\left(x-4\right)
Rewrite factored expression \left(x+a\right)\left(x+b\right) using the obtained values.
x=28 x=4
To find equation solutions, solve x-28=0 and x-4=0.
\sqrt{2\times 28+8}=3+\sqrt{28-3}
Substitute 28 for x in the equation \sqrt{2x+8}=3+\sqrt{x-3}.
8=8
Simplify. The value x=28 satisfies the equation.
\sqrt{2\times 4+8}=3+\sqrt{4-3}
Substitute 4 for x in the equation \sqrt{2x+8}=3+\sqrt{x-3}.
4=4
Simplify. The value x=4 satisfies the equation.
x=28 x=4
List all solutions of \sqrt{2x+8}=\sqrt{x-3}+3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}