Solve for x
x=1
x=-3
Graph
Share
Copied to clipboard
\left(\sqrt{2x+7}\right)^{2}=\left(\sqrt{x+3}+1\right)^{2}
Square both sides of the equation.
2x+7=\left(\sqrt{x+3}+1\right)^{2}
Calculate \sqrt{2x+7} to the power of 2 and get 2x+7.
2x+7=\left(\sqrt{x+3}\right)^{2}+2\sqrt{x+3}+1
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\sqrt{x+3}+1\right)^{2}.
2x+7=x+3+2\sqrt{x+3}+1
Calculate \sqrt{x+3} to the power of 2 and get x+3.
2x+7=x+4+2\sqrt{x+3}
Add 3 and 1 to get 4.
2x+7-\left(x+4\right)=2\sqrt{x+3}
Subtract x+4 from both sides of the equation.
2x+7-x-4=2\sqrt{x+3}
To find the opposite of x+4, find the opposite of each term.
x+7-4=2\sqrt{x+3}
Combine 2x and -x to get x.
x+3=2\sqrt{x+3}
Subtract 4 from 7 to get 3.
\left(x+3\right)^{2}=\left(2\sqrt{x+3}\right)^{2}
Square both sides of the equation.
x^{2}+6x+9=\left(2\sqrt{x+3}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+3\right)^{2}.
x^{2}+6x+9=2^{2}\left(\sqrt{x+3}\right)^{2}
Expand \left(2\sqrt{x+3}\right)^{2}.
x^{2}+6x+9=4\left(\sqrt{x+3}\right)^{2}
Calculate 2 to the power of 2 and get 4.
x^{2}+6x+9=4\left(x+3\right)
Calculate \sqrt{x+3} to the power of 2 and get x+3.
x^{2}+6x+9=4x+12
Use the distributive property to multiply 4 by x+3.
x^{2}+6x+9-4x=12
Subtract 4x from both sides.
x^{2}+2x+9=12
Combine 6x and -4x to get 2x.
x^{2}+2x+9-12=0
Subtract 12 from both sides.
x^{2}+2x-3=0
Subtract 12 from 9 to get -3.
a+b=2 ab=-3
To solve the equation, factor x^{2}+2x-3 using formula x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). To find a and b, set up a system to be solved.
a=-1 b=3
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. The only such pair is the system solution.
\left(x-1\right)\left(x+3\right)
Rewrite factored expression \left(x+a\right)\left(x+b\right) using the obtained values.
x=1 x=-3
To find equation solutions, solve x-1=0 and x+3=0.
\sqrt{2\times 1+7}=\sqrt{1+3}+1
Substitute 1 for x in the equation \sqrt{2x+7}=\sqrt{x+3}+1.
3=3
Simplify. The value x=1 satisfies the equation.
\sqrt{2\left(-3\right)+7}=\sqrt{-3+3}+1
Substitute -3 for x in the equation \sqrt{2x+7}=\sqrt{x+3}+1.
1=1
Simplify. The value x=-3 satisfies the equation.
x=1 x=-3
List all solutions of \sqrt{2x+7}=\sqrt{x+3}+1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}