Solve for x
x=\frac{25}{72}\approx 0.347222222
Graph
Share
Copied to clipboard
\left(\sqrt{2x+4}\right)^{2}=\left(3-\sqrt{2x}\right)^{2}
Square both sides of the equation.
2x+4=\left(3-\sqrt{2x}\right)^{2}
Calculate \sqrt{2x+4} to the power of 2 and get 2x+4.
2x+4=9-6\sqrt{2x}+\left(\sqrt{2x}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3-\sqrt{2x}\right)^{2}.
2x+4=9-6\sqrt{2x}+2x
Calculate \sqrt{2x} to the power of 2 and get 2x.
2x+4+6\sqrt{2x}=9+2x
Add 6\sqrt{2x} to both sides.
2x+4+6\sqrt{2x}-2x=9
Subtract 2x from both sides.
4+6\sqrt{2x}=9
Combine 2x and -2x to get 0.
6\sqrt{2x}=9-4
Subtract 4 from both sides.
6\sqrt{2x}=5
Subtract 4 from 9 to get 5.
\sqrt{2x}=\frac{5}{6}
Divide both sides by 6.
2x=\frac{25}{36}
Square both sides of the equation.
\frac{2x}{2}=\frac{\frac{25}{36}}{2}
Divide both sides by 2.
x=\frac{\frac{25}{36}}{2}
Dividing by 2 undoes the multiplication by 2.
x=\frac{25}{72}
Divide \frac{25}{36} by 2.
\sqrt{2\times \frac{25}{72}+4}=3-\sqrt{2\times \frac{25}{72}}
Substitute \frac{25}{72} for x in the equation \sqrt{2x+4}=3-\sqrt{2x}.
\frac{13}{6}=\frac{13}{6}
Simplify. The value x=\frac{25}{72} satisfies the equation.
x=\frac{25}{72}
Equation \sqrt{2x+4}=-\sqrt{2x}+3 has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}