Solve for x
x=30
x=6
Graph
Share
Copied to clipboard
\left(\sqrt{2x+4}\right)^{2}=\left(3+\sqrt{x-5}\right)^{2}
Square both sides of the equation.
2x+4=\left(3+\sqrt{x-5}\right)^{2}
Calculate \sqrt{2x+4} to the power of 2 and get 2x+4.
2x+4=9+6\sqrt{x-5}+\left(\sqrt{x-5}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(3+\sqrt{x-5}\right)^{2}.
2x+4=9+6\sqrt{x-5}+x-5
Calculate \sqrt{x-5} to the power of 2 and get x-5.
2x+4=4+6\sqrt{x-5}+x
Subtract 5 from 9 to get 4.
2x+4-\left(4+x\right)=6\sqrt{x-5}
Subtract 4+x from both sides of the equation.
2x+4-4-x=6\sqrt{x-5}
To find the opposite of 4+x, find the opposite of each term.
2x-x=6\sqrt{x-5}
Subtract 4 from 4 to get 0.
x=6\sqrt{x-5}
Combine 2x and -x to get x.
x^{2}=\left(6\sqrt{x-5}\right)^{2}
Square both sides of the equation.
x^{2}=6^{2}\left(\sqrt{x-5}\right)^{2}
Expand \left(6\sqrt{x-5}\right)^{2}.
x^{2}=36\left(\sqrt{x-5}\right)^{2}
Calculate 6 to the power of 2 and get 36.
x^{2}=36\left(x-5\right)
Calculate \sqrt{x-5} to the power of 2 and get x-5.
x^{2}=36x-180
Use the distributive property to multiply 36 by x-5.
x^{2}-36x=-180
Subtract 36x from both sides.
x^{2}-36x+180=0
Add 180 to both sides.
a+b=-36 ab=180
To solve the equation, factor x^{2}-36x+180 using formula x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). To find a and b, set up a system to be solved.
-1,-180 -2,-90 -3,-60 -4,-45 -5,-36 -6,-30 -9,-20 -10,-18 -12,-15
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 180.
-1-180=-181 -2-90=-92 -3-60=-63 -4-45=-49 -5-36=-41 -6-30=-36 -9-20=-29 -10-18=-28 -12-15=-27
Calculate the sum for each pair.
a=-30 b=-6
The solution is the pair that gives sum -36.
\left(x-30\right)\left(x-6\right)
Rewrite factored expression \left(x+a\right)\left(x+b\right) using the obtained values.
x=30 x=6
To find equation solutions, solve x-30=0 and x-6=0.
\sqrt{2\times 30+4}=3+\sqrt{30-5}
Substitute 30 for x in the equation \sqrt{2x+4}=3+\sqrt{x-5}.
8=8
Simplify. The value x=30 satisfies the equation.
\sqrt{2\times 6+4}=3+\sqrt{6-5}
Substitute 6 for x in the equation \sqrt{2x+4}=3+\sqrt{x-5}.
4=4
Simplify. The value x=6 satisfies the equation.
x=30 x=6
List all solutions of \sqrt{2x+4}=\sqrt{x-5}+3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}