Solve for x
x=17
Graph
Share
Copied to clipboard
\sqrt{2x+2}=1+\sqrt{x+8}
Subtract -\sqrt{x+8} from both sides of the equation.
\left(\sqrt{2x+2}\right)^{2}=\left(1+\sqrt{x+8}\right)^{2}
Square both sides of the equation.
2x+2=\left(1+\sqrt{x+8}\right)^{2}
Calculate \sqrt{2x+2} to the power of 2 and get 2x+2.
2x+2=1+2\sqrt{x+8}+\left(\sqrt{x+8}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(1+\sqrt{x+8}\right)^{2}.
2x+2=1+2\sqrt{x+8}+x+8
Calculate \sqrt{x+8} to the power of 2 and get x+8.
2x+2=9+2\sqrt{x+8}+x
Add 1 and 8 to get 9.
2x+2-\left(9+x\right)=2\sqrt{x+8}
Subtract 9+x from both sides of the equation.
2x+2-9-x=2\sqrt{x+8}
To find the opposite of 9+x, find the opposite of each term.
2x-7-x=2\sqrt{x+8}
Subtract 9 from 2 to get -7.
x-7=2\sqrt{x+8}
Combine 2x and -x to get x.
\left(x-7\right)^{2}=\left(2\sqrt{x+8}\right)^{2}
Square both sides of the equation.
x^{2}-14x+49=\left(2\sqrt{x+8}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-7\right)^{2}.
x^{2}-14x+49=2^{2}\left(\sqrt{x+8}\right)^{2}
Expand \left(2\sqrt{x+8}\right)^{2}.
x^{2}-14x+49=4\left(\sqrt{x+8}\right)^{2}
Calculate 2 to the power of 2 and get 4.
x^{2}-14x+49=4\left(x+8\right)
Calculate \sqrt{x+8} to the power of 2 and get x+8.
x^{2}-14x+49=4x+32
Use the distributive property to multiply 4 by x+8.
x^{2}-14x+49-4x=32
Subtract 4x from both sides.
x^{2}-18x+49=32
Combine -14x and -4x to get -18x.
x^{2}-18x+49-32=0
Subtract 32 from both sides.
x^{2}-18x+17=0
Subtract 32 from 49 to get 17.
a+b=-18 ab=17
To solve the equation, factor x^{2}-18x+17 using formula x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). To find a and b, set up a system to be solved.
a=-17 b=-1
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. The only such pair is the system solution.
\left(x-17\right)\left(x-1\right)
Rewrite factored expression \left(x+a\right)\left(x+b\right) using the obtained values.
x=17 x=1
To find equation solutions, solve x-17=0 and x-1=0.
\sqrt{2\times 17+2}-\sqrt{17+8}=1
Substitute 17 for x in the equation \sqrt{2x+2}-\sqrt{x+8}=1.
1=1
Simplify. The value x=17 satisfies the equation.
\sqrt{2\times 1+2}-\sqrt{1+8}=1
Substitute 1 for x in the equation \sqrt{2x+2}-\sqrt{x+8}=1.
-1=1
Simplify. The value x=1 does not satisfy the equation because the left and the right hand side have opposite signs.
\sqrt{2\times 17+2}-\sqrt{17+8}=1
Substitute 17 for x in the equation \sqrt{2x+2}-\sqrt{x+8}=1.
1=1
Simplify. The value x=17 satisfies the equation.
x=17
Equation \sqrt{2x+2}=\sqrt{x+8}+1 has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}