Solve for x
x=8\sqrt{31}+47\approx 91.542114903
Graph
Share
Copied to clipboard
\sqrt{2x+1}=4+\sqrt{x}
Subtract -\sqrt{x} from both sides of the equation.
\left(\sqrt{2x+1}\right)^{2}=\left(4+\sqrt{x}\right)^{2}
Square both sides of the equation.
2x+1=\left(4+\sqrt{x}\right)^{2}
Calculate \sqrt{2x+1} to the power of 2 and get 2x+1.
2x+1=16+8\sqrt{x}+\left(\sqrt{x}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(4+\sqrt{x}\right)^{2}.
2x+1=16+8\sqrt{x}+x
Calculate \sqrt{x} to the power of 2 and get x.
2x+1-\left(16+x\right)=8\sqrt{x}
Subtract 16+x from both sides of the equation.
2x+1-16-x=8\sqrt{x}
To find the opposite of 16+x, find the opposite of each term.
2x-15-x=8\sqrt{x}
Subtract 16 from 1 to get -15.
x-15=8\sqrt{x}
Combine 2x and -x to get x.
\left(x-15\right)^{2}=\left(8\sqrt{x}\right)^{2}
Square both sides of the equation.
x^{2}-30x+225=\left(8\sqrt{x}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-15\right)^{2}.
x^{2}-30x+225=8^{2}\left(\sqrt{x}\right)^{2}
Expand \left(8\sqrt{x}\right)^{2}.
x^{2}-30x+225=64\left(\sqrt{x}\right)^{2}
Calculate 8 to the power of 2 and get 64.
x^{2}-30x+225=64x
Calculate \sqrt{x} to the power of 2 and get x.
x^{2}-30x+225-64x=0
Subtract 64x from both sides.
x^{2}-94x+225=0
Combine -30x and -64x to get -94x.
x=\frac{-\left(-94\right)±\sqrt{\left(-94\right)^{2}-4\times 225}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -94 for b, and 225 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-94\right)±\sqrt{8836-4\times 225}}{2}
Square -94.
x=\frac{-\left(-94\right)±\sqrt{8836-900}}{2}
Multiply -4 times 225.
x=\frac{-\left(-94\right)±\sqrt{7936}}{2}
Add 8836 to -900.
x=\frac{-\left(-94\right)±16\sqrt{31}}{2}
Take the square root of 7936.
x=\frac{94±16\sqrt{31}}{2}
The opposite of -94 is 94.
x=\frac{16\sqrt{31}+94}{2}
Now solve the equation x=\frac{94±16\sqrt{31}}{2} when ± is plus. Add 94 to 16\sqrt{31}.
x=8\sqrt{31}+47
Divide 94+16\sqrt{31} by 2.
x=\frac{94-16\sqrt{31}}{2}
Now solve the equation x=\frac{94±16\sqrt{31}}{2} when ± is minus. Subtract 16\sqrt{31} from 94.
x=47-8\sqrt{31}
Divide 94-16\sqrt{31} by 2.
x=8\sqrt{31}+47 x=47-8\sqrt{31}
The equation is now solved.
\sqrt{2\left(8\sqrt{31}+47\right)+1}-\sqrt{8\sqrt{31}+47}=4
Substitute 8\sqrt{31}+47 for x in the equation \sqrt{2x+1}-\sqrt{x}=4.
4=4
Simplify. The value x=8\sqrt{31}+47 satisfies the equation.
\sqrt{2\left(47-8\sqrt{31}\right)+1}-\sqrt{47-8\sqrt{31}}=4
Substitute 47-8\sqrt{31} for x in the equation \sqrt{2x+1}-\sqrt{x}=4.
12-2\times 31^{\frac{1}{2}}=4
Simplify. The value x=47-8\sqrt{31} does not satisfy the equation.
\sqrt{2\left(8\sqrt{31}+47\right)+1}-\sqrt{8\sqrt{31}+47}=4
Substitute 8\sqrt{31}+47 for x in the equation \sqrt{2x+1}-\sqrt{x}=4.
4=4
Simplify. The value x=8\sqrt{31}+47 satisfies the equation.
x=8\sqrt{31}+47
Equation \sqrt{2x+1}=\sqrt{x}+4 has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}