Solve for x
x=\frac{5}{8}=0.625
Graph
Share
Copied to clipboard
\sqrt{2x+1}=2-\sqrt{2x-1}
Subtract \sqrt{2x-1} from both sides of the equation.
\left(\sqrt{2x+1}\right)^{2}=\left(2-\sqrt{2x-1}\right)^{2}
Square both sides of the equation.
2x+1=\left(2-\sqrt{2x-1}\right)^{2}
Calculate \sqrt{2x+1} to the power of 2 and get 2x+1.
2x+1=4-4\sqrt{2x-1}+\left(\sqrt{2x-1}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2-\sqrt{2x-1}\right)^{2}.
2x+1=4-4\sqrt{2x-1}+2x-1
Calculate \sqrt{2x-1} to the power of 2 and get 2x-1.
2x+1=3-4\sqrt{2x-1}+2x
Subtract 1 from 4 to get 3.
2x+1+4\sqrt{2x-1}=3+2x
Add 4\sqrt{2x-1} to both sides.
2x+1+4\sqrt{2x-1}-2x=3
Subtract 2x from both sides.
1+4\sqrt{2x-1}=3
Combine 2x and -2x to get 0.
4\sqrt{2x-1}=3-1
Subtract 1 from both sides.
4\sqrt{2x-1}=2
Subtract 1 from 3 to get 2.
\sqrt{2x-1}=\frac{2}{4}
Divide both sides by 4.
\sqrt{2x-1}=\frac{1}{2}
Reduce the fraction \frac{2}{4} to lowest terms by extracting and canceling out 2.
2x-1=\frac{1}{4}
Square both sides of the equation.
2x-1-\left(-1\right)=\frac{1}{4}-\left(-1\right)
Add 1 to both sides of the equation.
2x=\frac{1}{4}-\left(-1\right)
Subtracting -1 from itself leaves 0.
2x=\frac{5}{4}
Subtract -1 from \frac{1}{4}.
\frac{2x}{2}=\frac{\frac{5}{4}}{2}
Divide both sides by 2.
x=\frac{\frac{5}{4}}{2}
Dividing by 2 undoes the multiplication by 2.
x=\frac{5}{8}
Divide \frac{5}{4} by 2.
\sqrt{2\times \frac{5}{8}+1}+\sqrt{2\times \frac{5}{8}-1}=2
Substitute \frac{5}{8} for x in the equation \sqrt{2x+1}+\sqrt{2x-1}=2.
2=2
Simplify. The value x=\frac{5}{8} satisfies the equation.
x=\frac{5}{8}
Equation \sqrt{2x+1}=-\sqrt{2x-1}+2 has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}