Solve for u
u=-1
Share
Copied to clipboard
\left(\sqrt{2u+3}\right)^{2}=\left(\sqrt{-2u-1}\right)^{2}
Square both sides of the equation.
2u+3=\left(\sqrt{-2u-1}\right)^{2}
Calculate \sqrt{2u+3} to the power of 2 and get 2u+3.
2u+3=-2u-1
Calculate \sqrt{-2u-1} to the power of 2 and get -2u-1.
2u+3+2u=-1
Add 2u to both sides.
4u+3=-1
Combine 2u and 2u to get 4u.
4u=-1-3
Subtract 3 from both sides.
4u=-4
Subtract 3 from -1 to get -4.
u=\frac{-4}{4}
Divide both sides by 4.
u=-1
Divide -4 by 4 to get -1.
\sqrt{2\left(-1\right)+3}=\sqrt{-2\left(-1\right)-1}
Substitute -1 for u in the equation \sqrt{2u+3}=\sqrt{-2u-1}.
1=1
Simplify. The value u=-1 satisfies the equation.
u=-1
Equation \sqrt{2u+3}=\sqrt{-2u-1} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}