Solve for n
n=4
Share
Copied to clipboard
\sqrt{2n+1}=n-1
Subtract 1 from both sides of the equation.
\left(\sqrt{2n+1}\right)^{2}=\left(n-1\right)^{2}
Square both sides of the equation.
2n+1=\left(n-1\right)^{2}
Calculate \sqrt{2n+1} to the power of 2 and get 2n+1.
2n+1=n^{2}-2n+1
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(n-1\right)^{2}.
2n+1-n^{2}=-2n+1
Subtract n^{2} from both sides.
2n+1-n^{2}+2n=1
Add 2n to both sides.
4n+1-n^{2}=1
Combine 2n and 2n to get 4n.
4n+1-n^{2}-1=0
Subtract 1 from both sides.
4n-n^{2}=0
Subtract 1 from 1 to get 0.
n\left(4-n\right)=0
Factor out n.
n=0 n=4
To find equation solutions, solve n=0 and 4-n=0.
\sqrt{2\times 0+1}+1=0
Substitute 0 for n in the equation \sqrt{2n+1}+1=n.
2=0
Simplify. The value n=0 does not satisfy the equation.
\sqrt{2\times 4+1}+1=4
Substitute 4 for n in the equation \sqrt{2n+1}+1=n.
4=4
Simplify. The value n=4 satisfies the equation.
n=4
Equation \sqrt{2n+1}=n-1 has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}