Solve for x
x=-\frac{1}{5}=-0.2
Graph
Share
Copied to clipboard
\left(\sqrt{2-3x}\right)^{2}=\left(\sqrt{3+2x}\right)^{2}
Square both sides of the equation.
2-3x=\left(\sqrt{3+2x}\right)^{2}
Calculate \sqrt{2-3x} to the power of 2 and get 2-3x.
2-3x=3+2x
Calculate \sqrt{3+2x} to the power of 2 and get 3+2x.
2-3x-2x=3
Subtract 2x from both sides.
2-5x=3
Combine -3x and -2x to get -5x.
-5x=3-2
Subtract 2 from both sides.
-5x=1
Subtract 2 from 3 to get 1.
x=\frac{1}{-5}
Divide both sides by -5.
x=-\frac{1}{5}
Fraction \frac{1}{-5} can be rewritten as -\frac{1}{5} by extracting the negative sign.
\sqrt{2-3\left(-\frac{1}{5}\right)}=\sqrt{3+2\left(-\frac{1}{5}\right)}
Substitute -\frac{1}{5} for x in the equation \sqrt{2-3x}=\sqrt{3+2x}.
\frac{1}{5}\times 65^{\frac{1}{2}}=\frac{1}{5}\times 65^{\frac{1}{2}}
Simplify. The value x=-\frac{1}{5} satisfies the equation.
x=-\frac{1}{5}
Equation \sqrt{2-3x}=\sqrt{2x+3} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}