Solve for a
a=\sqrt{17}+1\approx 5.123105626
Share
Copied to clipboard
\left(\sqrt{2\left(8+a\right)}\right)^{2}=a^{2}
Square both sides of the equation.
\left(\sqrt{16+2a}\right)^{2}=a^{2}
Use the distributive property to multiply 2 by 8+a.
16+2a=a^{2}
Calculate \sqrt{16+2a} to the power of 2 and get 16+2a.
16+2a-a^{2}=0
Subtract a^{2} from both sides.
-a^{2}+2a+16=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
a=\frac{-2±\sqrt{2^{2}-4\left(-1\right)\times 16}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 2 for b, and 16 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-2±\sqrt{4-4\left(-1\right)\times 16}}{2\left(-1\right)}
Square 2.
a=\frac{-2±\sqrt{4+4\times 16}}{2\left(-1\right)}
Multiply -4 times -1.
a=\frac{-2±\sqrt{4+64}}{2\left(-1\right)}
Multiply 4 times 16.
a=\frac{-2±\sqrt{68}}{2\left(-1\right)}
Add 4 to 64.
a=\frac{-2±2\sqrt{17}}{2\left(-1\right)}
Take the square root of 68.
a=\frac{-2±2\sqrt{17}}{-2}
Multiply 2 times -1.
a=\frac{2\sqrt{17}-2}{-2}
Now solve the equation a=\frac{-2±2\sqrt{17}}{-2} when ± is plus. Add -2 to 2\sqrt{17}.
a=1-\sqrt{17}
Divide -2+2\sqrt{17} by -2.
a=\frac{-2\sqrt{17}-2}{-2}
Now solve the equation a=\frac{-2±2\sqrt{17}}{-2} when ± is minus. Subtract 2\sqrt{17} from -2.
a=\sqrt{17}+1
Divide -2-2\sqrt{17} by -2.
a=1-\sqrt{17} a=\sqrt{17}+1
The equation is now solved.
\sqrt{2\left(8+1-\sqrt{17}\right)}=1-\sqrt{17}
Substitute 1-\sqrt{17} for a in the equation \sqrt{2\left(8+a\right)}=a.
17^{\frac{1}{2}}-1=1-17^{\frac{1}{2}}
Simplify. The value a=1-\sqrt{17} does not satisfy the equation because the left and the right hand side have opposite signs.
\sqrt{2\left(8+\sqrt{17}+1\right)}=\sqrt{17}+1
Substitute \sqrt{17}+1 for a in the equation \sqrt{2\left(8+a\right)}=a.
1+17^{\frac{1}{2}}=1+17^{\frac{1}{2}}
Simplify. The value a=\sqrt{17}+1 satisfies the equation.
a=\sqrt{17}+1
Equation \sqrt{2\left(a+8\right)}=a has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}