Solve for x
x=-\frac{1}{2}=-0.5
Graph
Quiz
Linear Equation
5 problems similar to:
\sqrt { 2 } x - \frac { 1 } { \sqrt { 2 } } = \sqrt { 8 } x
Share
Copied to clipboard
\sqrt{2}x-\frac{\sqrt{2}}{\left(\sqrt{2}\right)^{2}}=\sqrt{8}x
Rationalize the denominator of \frac{1}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\sqrt{2}x-\frac{\sqrt{2}}{2}=\sqrt{8}x
The square of \sqrt{2} is 2.
\sqrt{2}x-\frac{\sqrt{2}}{2}=2\sqrt{2}x
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
\sqrt{2}x-\frac{\sqrt{2}}{2}-2\sqrt{2}x=0
Subtract 2\sqrt{2}x from both sides.
-\sqrt{2}x-\frac{\sqrt{2}}{2}=0
Combine \sqrt{2}x and -2\sqrt{2}x to get -\sqrt{2}x.
-\sqrt{2}x=\frac{\sqrt{2}}{2}
Add \frac{\sqrt{2}}{2} to both sides. Anything plus zero gives itself.
-2\sqrt{2}x=\sqrt{2}
Multiply both sides of the equation by 2.
\left(-2\sqrt{2}\right)x=\sqrt{2}
The equation is in standard form.
\frac{\left(-2\sqrt{2}\right)x}{-2\sqrt{2}}=\frac{\sqrt{2}}{-2\sqrt{2}}
Divide both sides by -2\sqrt{2}.
x=\frac{\sqrt{2}}{-2\sqrt{2}}
Dividing by -2\sqrt{2} undoes the multiplication by -2\sqrt{2}.
x=-\frac{1}{2}
Divide \sqrt{2} by -2\sqrt{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}