Solve for m
\left\{\begin{matrix}m=-\frac{\sqrt{2}\left(3-x\right)}{2x\mu }\text{, }&x\neq 0\text{ and }\mu \neq 0\\m\in \mathrm{R}\text{, }&x=3\text{ and }\mu =0\end{matrix}\right.
Solve for x
x=-\frac{3}{\sqrt{2}m\mu -1}
\mu =0\text{ or }m\neq \frac{\sqrt{2}}{2\mu }
Graph
Share
Copied to clipboard
\sqrt{2}m\mu x+3=x
Add x to both sides. Anything plus zero gives itself.
\sqrt{2}m\mu x=x-3
Subtract 3 from both sides.
\sqrt{2}x\mu m=x-3
The equation is in standard form.
\frac{\sqrt{2}x\mu m}{\sqrt{2}x\mu }=\frac{x-3}{\sqrt{2}x\mu }
Divide both sides by \sqrt{2}\mu x.
m=\frac{x-3}{\sqrt{2}x\mu }
Dividing by \sqrt{2}\mu x undoes the multiplication by \sqrt{2}\mu x.
m=\frac{\sqrt{2}\left(x-3\right)}{2x\mu }
Divide x-3 by \sqrt{2}\mu x.
\sqrt{2}m\mu x-x=-3
Subtract 3 from both sides. Anything subtracted from zero gives its negation.
\left(\sqrt{2}m\mu -1\right)x=-3
Combine all terms containing x.
\frac{\left(\sqrt{2}m\mu -1\right)x}{\sqrt{2}m\mu -1}=-\frac{3}{\sqrt{2}m\mu -1}
Divide both sides by \sqrt{2}m\mu -1.
x=-\frac{3}{\sqrt{2}m\mu -1}
Dividing by \sqrt{2}m\mu -1 undoes the multiplication by \sqrt{2}m\mu -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}