Evaluate
-\frac{5\sqrt{10}}{4}+\frac{3}{2}\approx -2.452847075
Share
Copied to clipboard
\sqrt{\frac{8+1}{4}}-\sqrt{\frac{15\times 8+5}{8}}
Multiply 2 and 4 to get 8.
\sqrt{\frac{9}{4}}-\sqrt{\frac{15\times 8+5}{8}}
Add 8 and 1 to get 9.
\frac{3}{2}-\sqrt{\frac{15\times 8+5}{8}}
Rewrite the square root of the division \frac{9}{4} as the division of square roots \frac{\sqrt{9}}{\sqrt{4}}. Take the square root of both numerator and denominator.
\frac{3}{2}-\sqrt{\frac{120+5}{8}}
Multiply 15 and 8 to get 120.
\frac{3}{2}-\sqrt{\frac{125}{8}}
Add 120 and 5 to get 125.
\frac{3}{2}-\frac{\sqrt{125}}{\sqrt{8}}
Rewrite the square root of the division \sqrt{\frac{125}{8}} as the division of square roots \frac{\sqrt{125}}{\sqrt{8}}.
\frac{3}{2}-\frac{5\sqrt{5}}{\sqrt{8}}
Factor 125=5^{2}\times 5. Rewrite the square root of the product \sqrt{5^{2}\times 5} as the product of square roots \sqrt{5^{2}}\sqrt{5}. Take the square root of 5^{2}.
\frac{3}{2}-\frac{5\sqrt{5}}{2\sqrt{2}}
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
\frac{3}{2}-\frac{5\sqrt{5}\sqrt{2}}{2\left(\sqrt{2}\right)^{2}}
Rationalize the denominator of \frac{5\sqrt{5}}{2\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{3}{2}-\frac{5\sqrt{5}\sqrt{2}}{2\times 2}
The square of \sqrt{2} is 2.
\frac{3}{2}-\frac{5\sqrt{10}}{2\times 2}
To multiply \sqrt{5} and \sqrt{2}, multiply the numbers under the square root.
\frac{3}{2}-\frac{5\sqrt{10}}{4}
Multiply 2 and 2 to get 4.
\frac{3\times 2}{4}-\frac{5\sqrt{10}}{4}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2 and 4 is 4. Multiply \frac{3}{2} times \frac{2}{2}.
\frac{3\times 2-5\sqrt{10}}{4}
Since \frac{3\times 2}{4} and \frac{5\sqrt{10}}{4} have the same denominator, subtract them by subtracting their numerators.
\frac{6-5\sqrt{10}}{4}
Do the multiplications in 3\times 2-5\sqrt{10}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}