Evaluate
-28\sqrt{2}\approx -39.597979746
Share
Copied to clipboard
\frac{\sqrt{\frac{6+1}{3}}}{3}\sqrt{28}\left(-12\right)\sqrt{\frac{1\times 2+1}{2}}
Multiply 2 and 3 to get 6.
\frac{\sqrt{\frac{7}{3}}}{3}\sqrt{28}\left(-12\right)\sqrt{\frac{1\times 2+1}{2}}
Add 6 and 1 to get 7.
\frac{\frac{\sqrt{7}}{\sqrt{3}}}{3}\sqrt{28}\left(-12\right)\sqrt{\frac{1\times 2+1}{2}}
Rewrite the square root of the division \sqrt{\frac{7}{3}} as the division of square roots \frac{\sqrt{7}}{\sqrt{3}}.
\frac{\frac{\sqrt{7}\sqrt{3}}{\left(\sqrt{3}\right)^{2}}}{3}\sqrt{28}\left(-12\right)\sqrt{\frac{1\times 2+1}{2}}
Rationalize the denominator of \frac{\sqrt{7}}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{\frac{\sqrt{7}\sqrt{3}}{3}}{3}\sqrt{28}\left(-12\right)\sqrt{\frac{1\times 2+1}{2}}
The square of \sqrt{3} is 3.
\frac{\frac{\sqrt{21}}{3}}{3}\sqrt{28}\left(-12\right)\sqrt{\frac{1\times 2+1}{2}}
To multiply \sqrt{7} and \sqrt{3}, multiply the numbers under the square root.
\frac{\sqrt{21}}{3\times 3}\sqrt{28}\left(-12\right)\sqrt{\frac{1\times 2+1}{2}}
Express \frac{\frac{\sqrt{21}}{3}}{3} as a single fraction.
\frac{\sqrt{21}}{9}\sqrt{28}\left(-12\right)\sqrt{\frac{1\times 2+1}{2}}
Multiply 3 and 3 to get 9.
\frac{\sqrt{21}}{9}\times 2\sqrt{7}\left(-12\right)\sqrt{\frac{1\times 2+1}{2}}
Factor 28=2^{2}\times 7. Rewrite the square root of the product \sqrt{2^{2}\times 7} as the product of square roots \sqrt{2^{2}}\sqrt{7}. Take the square root of 2^{2}.
\frac{\sqrt{21}}{9}\left(-24\right)\sqrt{7}\sqrt{\frac{1\times 2+1}{2}}
Multiply 2 and -12 to get -24.
\frac{\sqrt{21}}{9}\left(-24\right)\sqrt{7}\sqrt{\frac{2+1}{2}}
Multiply 1 and 2 to get 2.
\frac{\sqrt{21}}{9}\left(-24\right)\sqrt{7}\sqrt{\frac{3}{2}}
Add 2 and 1 to get 3.
\frac{\sqrt{21}}{9}\left(-24\right)\sqrt{7}\times \frac{\sqrt{3}}{\sqrt{2}}
Rewrite the square root of the division \sqrt{\frac{3}{2}} as the division of square roots \frac{\sqrt{3}}{\sqrt{2}}.
\frac{\sqrt{21}}{9}\left(-24\right)\sqrt{7}\times \frac{\sqrt{3}\sqrt{2}}{\left(\sqrt{2}\right)^{2}}
Rationalize the denominator of \frac{\sqrt{3}}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{\sqrt{21}}{9}\left(-24\right)\sqrt{7}\times \frac{\sqrt{3}\sqrt{2}}{2}
The square of \sqrt{2} is 2.
\frac{\sqrt{21}}{9}\left(-24\right)\sqrt{7}\times \frac{\sqrt{6}}{2}
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
\frac{-\sqrt{21}\times 24}{9}\sqrt{7}\times \frac{\sqrt{6}}{2}
Express \frac{\sqrt{21}}{9}\left(-24\right) as a single fraction.
\frac{-\sqrt{21}\times 24\sqrt{7}}{9}\times \frac{\sqrt{6}}{2}
Express \frac{-\sqrt{21}\times 24}{9}\sqrt{7} as a single fraction.
\frac{-\sqrt{21}\times 24\sqrt{7}\sqrt{6}}{9\times 2}
Multiply \frac{-\sqrt{21}\times 24\sqrt{7}}{9} times \frac{\sqrt{6}}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{-4\sqrt{6}\sqrt{7}\sqrt{21}}{3}
Cancel out 2\times 3 in both numerator and denominator.
\frac{-4\sqrt{6}\sqrt{7}\sqrt{7}\sqrt{3}}{3}
Factor 21=7\times 3. Rewrite the square root of the product \sqrt{7\times 3} as the product of square roots \sqrt{7}\sqrt{3}.
\frac{-4\sqrt{6}\times 7\sqrt{3}}{3}
Multiply \sqrt{7} and \sqrt{7} to get 7.
\frac{-4\sqrt{3}\sqrt{2}\times 7\sqrt{3}}{3}
Factor 6=3\times 2. Rewrite the square root of the product \sqrt{3\times 2} as the product of square roots \sqrt{3}\sqrt{2}.
\frac{-4\times 3\times 7\sqrt{2}}{3}
Multiply \sqrt{3} and \sqrt{3} to get 3.
\frac{-12\times 7\sqrt{2}}{3}
Multiply -4 and 3 to get -12.
\frac{-84\sqrt{2}}{3}
Multiply -12 and 7 to get -84.
-28\sqrt{2}
Divide -84\sqrt{2} by 3 to get -28\sqrt{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}