Skip to main content
Verify
true
Tick mark Image

Similar Problems from Web Search

Share

\sqrt{4+2^{2}}=\sqrt{4+4}\text{ and }\sqrt{4+4}=\sqrt{8}
Calculate 2 to the power of 2 and get 4.
\sqrt{4+4}=\sqrt{4+4}\text{ and }\sqrt{4+4}=\sqrt{8}
Calculate 2 to the power of 2 and get 4.
\sqrt{8}=\sqrt{4+4}\text{ and }\sqrt{4+4}=\sqrt{8}
Add 4 and 4 to get 8.
2\sqrt{2}=\sqrt{4+4}\text{ and }\sqrt{4+4}=\sqrt{8}
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
2\sqrt{2}=\sqrt{8}\text{ and }\sqrt{4+4}=\sqrt{8}
Add 4 and 4 to get 8.
2\sqrt{2}=2\sqrt{2}\text{ and }\sqrt{4+4}=\sqrt{8}
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
2\sqrt{2}=2\sqrt{2}\text{ and }\sqrt{8}=\sqrt{8}
Add 4 and 4 to get 8.
2\sqrt{2}=2\sqrt{2}\text{ and }2\sqrt{2}=\sqrt{8}
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
2\sqrt{2}=2\sqrt{2}\text{ and }2\sqrt{2}=2\sqrt{2}
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
2\sqrt{2}-2\sqrt{2}=0\text{ and }2\sqrt{2}=2\sqrt{2}
Subtract 2\sqrt{2} from both sides.
0=0\text{ and }2\sqrt{2}=2\sqrt{2}
Combine 2\sqrt{2} and -2\sqrt{2} to get 0.
\text{true}\text{ and }2\sqrt{2}=2\sqrt{2}
Compare 0 and 0.
\text{true}\text{ and }2\sqrt{2}-2\sqrt{2}=0
Subtract 2\sqrt{2} from both sides.
\text{true}\text{ and }0=0
Combine 2\sqrt{2} and -2\sqrt{2} to get 0.
\text{true}\text{ and }\text{true}
Compare 0 and 0.
\text{true}
The conjunction of \text{true} and \text{true} is \text{true}.