Evaluate
\sqrt{2}+1\approx 2.414213562
Factor
\sqrt{2} + 1 = 2.414213562
Share
Copied to clipboard
3\sqrt{2}-\frac{2}{\sqrt{2}}-\frac{\sqrt{8}}{2}+\left(\sqrt{5}-1\right)^{0}
Factor 18=3^{2}\times 2. Rewrite the square root of the product \sqrt{3^{2}\times 2} as the product of square roots \sqrt{3^{2}}\sqrt{2}. Take the square root of 3^{2}.
3\sqrt{2}-\frac{2\sqrt{2}}{\left(\sqrt{2}\right)^{2}}-\frac{\sqrt{8}}{2}+\left(\sqrt{5}-1\right)^{0}
Rationalize the denominator of \frac{2}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
3\sqrt{2}-\frac{2\sqrt{2}}{2}-\frac{\sqrt{8}}{2}+\left(\sqrt{5}-1\right)^{0}
The square of \sqrt{2} is 2.
3\sqrt{2}-\sqrt{2}-\frac{\sqrt{8}}{2}+\left(\sqrt{5}-1\right)^{0}
Cancel out 2 and 2.
3\sqrt{2}-\sqrt{2}-\frac{2\sqrt{2}}{2}+\left(\sqrt{5}-1\right)^{0}
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
3\sqrt{2}-\sqrt{2}-\sqrt{2}+\left(\sqrt{5}-1\right)^{0}
Cancel out 2 and 2.
3\sqrt{2}+2\left(-\sqrt{2}\right)+\left(\sqrt{5}-1\right)^{0}
Combine -\sqrt{2} and -\sqrt{2} to get 2\left(-\sqrt{2}\right).
3\sqrt{2}+2\left(-\sqrt{2}\right)+1
Calculate \sqrt{5}-1 to the power of 0 and get 1.
3\sqrt{2}-2\sqrt{2}+1
Multiply 2 and -1 to get -2.
\sqrt{2}+1
Combine 3\sqrt{2} and -2\sqrt{2} to get \sqrt{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}