Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

3\sqrt{2}\sqrt{\frac{2}{3}}-\left(1-\sqrt{3}\right)^{2}
Factor 18=3^{2}\times 2. Rewrite the square root of the product \sqrt{3^{2}\times 2} as the product of square roots \sqrt{3^{2}}\sqrt{2}. Take the square root of 3^{2}.
3\sqrt{2}\times \frac{\sqrt{2}}{\sqrt{3}}-\left(1-\sqrt{3}\right)^{2}
Rewrite the square root of the division \sqrt{\frac{2}{3}} as the division of square roots \frac{\sqrt{2}}{\sqrt{3}}.
3\sqrt{2}\times \frac{\sqrt{2}\sqrt{3}}{\left(\sqrt{3}\right)^{2}}-\left(1-\sqrt{3}\right)^{2}
Rationalize the denominator of \frac{\sqrt{2}}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
3\sqrt{2}\times \frac{\sqrt{2}\sqrt{3}}{3}-\left(1-\sqrt{3}\right)^{2}
The square of \sqrt{3} is 3.
3\sqrt{2}\times \frac{\sqrt{6}}{3}-\left(1-\sqrt{3}\right)^{2}
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.
\sqrt{6}\sqrt{2}-\left(1-\sqrt{3}\right)^{2}
Cancel out 3 and 3.
\sqrt{6}\sqrt{2}-\left(1-2\sqrt{3}+\left(\sqrt{3}\right)^{2}\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(1-\sqrt{3}\right)^{2}.
\sqrt{6}\sqrt{2}-\left(1-2\sqrt{3}+3\right)
The square of \sqrt{3} is 3.
\sqrt{6}\sqrt{2}-\left(4-2\sqrt{3}\right)
Add 1 and 3 to get 4.
\sqrt{6}\sqrt{2}-4+2\sqrt{3}
To find the opposite of 4-2\sqrt{3}, find the opposite of each term.
\sqrt{2}\sqrt{3}\sqrt{2}-4+2\sqrt{3}
Factor 6=2\times 3. Rewrite the square root of the product \sqrt{2\times 3} as the product of square roots \sqrt{2}\sqrt{3}.
2\sqrt{3}-4+2\sqrt{3}
Multiply \sqrt{2} and \sqrt{2} to get 2.
4\sqrt{3}-4
Combine 2\sqrt{3} and 2\sqrt{3} to get 4\sqrt{3}.