Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\sqrt{16-x}=4-\sqrt{x}
Subtract \sqrt{x} from both sides of the equation.
\left(\sqrt{16-x}\right)^{2}=\left(4-\sqrt{x}\right)^{2}
Square both sides of the equation.
16-x=\left(4-\sqrt{x}\right)^{2}
Calculate \sqrt{16-x} to the power of 2 and get 16-x.
16-x=16-8\sqrt{x}+\left(\sqrt{x}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(4-\sqrt{x}\right)^{2}.
16-x=16-8\sqrt{x}+x
Calculate \sqrt{x} to the power of 2 and get x.
16-x-\left(16+x\right)=-8\sqrt{x}
Subtract 16+x from both sides of the equation.
16-x-16-x=-8\sqrt{x}
To find the opposite of 16+x, find the opposite of each term.
-x-x=-8\sqrt{x}
Subtract 16 from 16 to get 0.
-2x=-8\sqrt{x}
Combine -x and -x to get -2x.
\left(-2x\right)^{2}=\left(-8\sqrt{x}\right)^{2}
Square both sides of the equation.
\left(-2\right)^{2}x^{2}=\left(-8\sqrt{x}\right)^{2}
Expand \left(-2x\right)^{2}.
4x^{2}=\left(-8\sqrt{x}\right)^{2}
Calculate -2 to the power of 2 and get 4.
4x^{2}=\left(-8\right)^{2}\left(\sqrt{x}\right)^{2}
Expand \left(-8\sqrt{x}\right)^{2}.
4x^{2}=64\left(\sqrt{x}\right)^{2}
Calculate -8 to the power of 2 and get 64.
4x^{2}=64x
Calculate \sqrt{x} to the power of 2 and get x.
4x^{2}-64x=0
Subtract 64x from both sides.
x\left(4x-64\right)=0
Factor out x.
x=0 x=16
To find equation solutions, solve x=0 and 4x-64=0.
\sqrt{16-0}+\sqrt{0}=4
Substitute 0 for x in the equation \sqrt{16-x}+\sqrt{x}=4.
4=4
Simplify. The value x=0 satisfies the equation.
\sqrt{16-16}+\sqrt{16}=4
Substitute 16 for x in the equation \sqrt{16-x}+\sqrt{x}=4.
4=4
Simplify. The value x=16 satisfies the equation.
x=0 x=16
List all solutions of \sqrt{16-x}=-\sqrt{x}+4.