Solve for x
x=3
Graph
Share
Copied to clipboard
\left(\sqrt{16+x^{2}}\right)^{2}=\left(8-x\right)^{2}
Square both sides of the equation.
16+x^{2}=\left(8-x\right)^{2}
Calculate \sqrt{16+x^{2}} to the power of 2 and get 16+x^{2}.
16+x^{2}=64-16x+x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(8-x\right)^{2}.
16+x^{2}+16x=64+x^{2}
Add 16x to both sides.
16+x^{2}+16x-x^{2}=64
Subtract x^{2} from both sides.
16+16x=64
Combine x^{2} and -x^{2} to get 0.
16x=64-16
Subtract 16 from both sides.
16x=48
Subtract 16 from 64 to get 48.
x=\frac{48}{16}
Divide both sides by 16.
x=3
Divide 48 by 16 to get 3.
\sqrt{16+3^{2}}=8-3
Substitute 3 for x in the equation \sqrt{16+x^{2}}=8-x.
5=5
Simplify. The value x=3 satisfies the equation.
x=3
Equation \sqrt{x^{2}+16}=8-x has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}