Skip to main content
Evaluate
Tick mark Image

Share

\frac{\sqrt{15}\times \frac{\sqrt{5}}{3}\times 2\sqrt{5}}{-\frac{1}{3}\sqrt{6}}
Factor 20=2^{2}\times 5. Rewrite the square root of the product \sqrt{2^{2}\times 5} as the product of square roots \sqrt{2^{2}}\sqrt{5}. Take the square root of 2^{2}.
\frac{\frac{\sqrt{15}\sqrt{5}}{3}\times 2\sqrt{5}}{-\frac{1}{3}\sqrt{6}}
Express \sqrt{15}\times \frac{\sqrt{5}}{3} as a single fraction.
\frac{\frac{\sqrt{15}\sqrt{5}\times 2}{3}\sqrt{5}}{-\frac{1}{3}\sqrt{6}}
Express \frac{\sqrt{15}\sqrt{5}}{3}\times 2 as a single fraction.
\frac{\frac{\sqrt{15}\sqrt{5}\times 2\sqrt{5}}{3}}{-\frac{1}{3}\sqrt{6}}
Express \frac{\sqrt{15}\sqrt{5}\times 2}{3}\sqrt{5} as a single fraction.
\frac{\sqrt{15}\sqrt{5}\times 2\sqrt{5}}{3\left(-\frac{1}{3}\right)\sqrt{6}}
Express \frac{\frac{\sqrt{15}\sqrt{5}\times 2\sqrt{5}}{3}}{-\frac{1}{3}\sqrt{6}} as a single fraction.
\frac{\sqrt{15}\sqrt{5}\times 2\sqrt{5}\sqrt{6}}{3\left(-\frac{1}{3}\right)\left(\sqrt{6}\right)^{2}}
Rationalize the denominator of \frac{\sqrt{15}\sqrt{5}\times 2\sqrt{5}}{3\left(-\frac{1}{3}\right)\sqrt{6}} by multiplying numerator and denominator by \sqrt{6}.
\frac{\sqrt{15}\sqrt{5}\times 2\sqrt{5}\sqrt{6}}{3\left(-\frac{1}{3}\right)\times 6}
The square of \sqrt{6} is 6.
\frac{\sqrt{15}\times 5\times 2\sqrt{6}}{3\left(-\frac{1}{3}\right)\times 6}
Multiply \sqrt{5} and \sqrt{5} to get 5.
\frac{\sqrt{15}\times 10\sqrt{6}}{3\left(-\frac{1}{3}\right)\times 6}
Multiply 5 and 2 to get 10.
\frac{\sqrt{90}\times 10}{3\left(-\frac{1}{3}\right)\times 6}
To multiply \sqrt{15} and \sqrt{6}, multiply the numbers under the square root.
\frac{\sqrt{90}\times 10}{-6}
Cancel out 3 and 3.
\frac{3\sqrt{10}\times 10}{-6}
Factor 90=3^{2}\times 10. Rewrite the square root of the product \sqrt{3^{2}\times 10} as the product of square roots \sqrt{3^{2}}\sqrt{10}. Take the square root of 3^{2}.
\frac{30\sqrt{10}}{-6}
Multiply 3 and 10 to get 30.
-5\sqrt{10}
Divide 30\sqrt{10} by -6 to get -5\sqrt{10}.