Solve for x_4
x_{4}=\frac{3\sqrt{13}y}{13}
Solve for y
y=\frac{\sqrt{13}x_{4}}{3}
Graph
Share
Copied to clipboard
\frac{13}{3}x_{4}=\sqrt{13}y
Swap sides so that all variable terms are on the left hand side.
\frac{\frac{13}{3}x_{4}}{\frac{13}{3}}=\frac{\sqrt{13}y}{\frac{13}{3}}
Divide both sides of the equation by \frac{13}{3}, which is the same as multiplying both sides by the reciprocal of the fraction.
x_{4}=\frac{\sqrt{13}y}{\frac{13}{3}}
Dividing by \frac{13}{3} undoes the multiplication by \frac{13}{3}.
x_{4}=\frac{3\sqrt{13}y}{13}
Divide \sqrt{13}y by \frac{13}{3} by multiplying \sqrt{13}y by the reciprocal of \frac{13}{3}.
\sqrt{13}y=\frac{13x_{4}}{3}
The equation is in standard form.
\frac{\sqrt{13}y}{\sqrt{13}}=\frac{13x_{4}}{3\sqrt{13}}
Divide both sides by \sqrt{13}.
y=\frac{13x_{4}}{3\sqrt{13}}
Dividing by \sqrt{13} undoes the multiplication by \sqrt{13}.
y=\frac{\sqrt{13}x_{4}}{3}
Divide \frac{13x_{4}}{3} by \sqrt{13}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}