Solve for x (complex solution)
x=\frac{-59+\sqrt{11}i}{36}\approx -1.638888889+0.092128466i
Graph
Share
Copied to clipboard
\left(\sqrt{12x+4\left(3-x\right)}\right)^{2}=\left(12\left(x+2\right)-4\right)^{2}
Square both sides of the equation.
\left(\sqrt{12x+12-4x}\right)^{2}=\left(12\left(x+2\right)-4\right)^{2}
Use the distributive property to multiply 4 by 3-x.
\left(\sqrt{8x+12}\right)^{2}=\left(12\left(x+2\right)-4\right)^{2}
Combine 12x and -4x to get 8x.
8x+12=\left(12\left(x+2\right)-4\right)^{2}
Calculate \sqrt{8x+12} to the power of 2 and get 8x+12.
8x+12=\left(12x+24-4\right)^{2}
Use the distributive property to multiply 12 by x+2.
8x+12=\left(12x+20\right)^{2}
Subtract 4 from 24 to get 20.
8x+12=144x^{2}+480x+400
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(12x+20\right)^{2}.
8x+12-144x^{2}=480x+400
Subtract 144x^{2} from both sides.
8x+12-144x^{2}-480x=400
Subtract 480x from both sides.
-472x+12-144x^{2}=400
Combine 8x and -480x to get -472x.
-472x+12-144x^{2}-400=0
Subtract 400 from both sides.
-472x-388-144x^{2}=0
Subtract 400 from 12 to get -388.
-144x^{2}-472x-388=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-472\right)±\sqrt{\left(-472\right)^{2}-4\left(-144\right)\left(-388\right)}}{2\left(-144\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -144 for a, -472 for b, and -388 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-472\right)±\sqrt{222784-4\left(-144\right)\left(-388\right)}}{2\left(-144\right)}
Square -472.
x=\frac{-\left(-472\right)±\sqrt{222784+576\left(-388\right)}}{2\left(-144\right)}
Multiply -4 times -144.
x=\frac{-\left(-472\right)±\sqrt{222784-223488}}{2\left(-144\right)}
Multiply 576 times -388.
x=\frac{-\left(-472\right)±\sqrt{-704}}{2\left(-144\right)}
Add 222784 to -223488.
x=\frac{-\left(-472\right)±8\sqrt{11}i}{2\left(-144\right)}
Take the square root of -704.
x=\frac{472±8\sqrt{11}i}{2\left(-144\right)}
The opposite of -472 is 472.
x=\frac{472±8\sqrt{11}i}{-288}
Multiply 2 times -144.
x=\frac{472+8\sqrt{11}i}{-288}
Now solve the equation x=\frac{472±8\sqrt{11}i}{-288} when ± is plus. Add 472 to 8i\sqrt{11}.
x=\frac{-\sqrt{11}i-59}{36}
Divide 472+8i\sqrt{11} by -288.
x=\frac{-8\sqrt{11}i+472}{-288}
Now solve the equation x=\frac{472±8\sqrt{11}i}{-288} when ± is minus. Subtract 8i\sqrt{11} from 472.
x=\frac{-59+\sqrt{11}i}{36}
Divide 472-8i\sqrt{11} by -288.
x=\frac{-\sqrt{11}i-59}{36} x=\frac{-59+\sqrt{11}i}{36}
The equation is now solved.
\sqrt{12\times \frac{-\sqrt{11}i-59}{36}+4\left(3-\frac{-\sqrt{11}i-59}{36}\right)}=12\left(\frac{-\sqrt{11}i-59}{36}+2\right)-4
Substitute \frac{-\sqrt{11}i-59}{36} for x in the equation \sqrt{12x+4\left(3-x\right)}=12\left(x+2\right)-4.
-\frac{1}{3}+\frac{1}{3}i\times 11^{\frac{1}{2}}=-\frac{1}{3}i\times 11^{\frac{1}{2}}+\frac{1}{3}
Simplify. The value x=\frac{-\sqrt{11}i-59}{36} does not satisfy the equation.
\sqrt{12\times \frac{-59+\sqrt{11}i}{36}+4\left(3-\frac{-59+\sqrt{11}i}{36}\right)}=12\left(\frac{-59+\sqrt{11}i}{36}+2\right)-4
Substitute \frac{-59+\sqrt{11}i}{36} for x in the equation \sqrt{12x+4\left(3-x\right)}=12\left(x+2\right)-4.
\frac{1}{3}+\frac{1}{3}i\times 11^{\frac{1}{2}}=\frac{1}{3}+\frac{1}{3}i\times 11^{\frac{1}{2}}
Simplify. The value x=\frac{-59+\sqrt{11}i}{36} satisfies the equation.
x=\frac{-59+\sqrt{11}i}{36}
Equation \sqrt{4\left(3-x\right)+12x}=12\left(x+2\right)-4 has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}