Solve for x
x=10
x=0
Graph
Share
Copied to clipboard
\left(\sqrt{12x+1}\right)^{2}=\left(1+\sqrt{10x}\right)^{2}
Square both sides of the equation.
12x+1=\left(1+\sqrt{10x}\right)^{2}
Calculate \sqrt{12x+1} to the power of 2 and get 12x+1.
12x+1=1+2\sqrt{10x}+\left(\sqrt{10x}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(1+\sqrt{10x}\right)^{2}.
12x+1=1+2\sqrt{10x}+10x
Calculate \sqrt{10x} to the power of 2 and get 10x.
12x+1-\left(1+10x\right)=2\sqrt{10x}
Subtract 1+10x from both sides of the equation.
12x+1-1-10x=2\sqrt{10x}
To find the opposite of 1+10x, find the opposite of each term.
12x-10x=2\sqrt{10x}
Subtract 1 from 1 to get 0.
2x=2\sqrt{10x}
Combine 12x and -10x to get 2x.
x=\sqrt{10x}
Cancel out 2 on both sides.
x^{2}=\left(\sqrt{10x}\right)^{2}
Square both sides of the equation.
x^{2}=10x
Calculate \sqrt{10x} to the power of 2 and get 10x.
x^{2}-10x=0
Subtract 10x from both sides.
x\left(x-10\right)=0
Factor out x.
x=0 x=10
To find equation solutions, solve x=0 and x-10=0.
\sqrt{12\times 0+1}=1+\sqrt{10\times 0}
Substitute 0 for x in the equation \sqrt{12x+1}=1+\sqrt{10x}.
1=1
Simplify. The value x=0 satisfies the equation.
\sqrt{12\times 10+1}=1+\sqrt{10\times 10}
Substitute 10 for x in the equation \sqrt{12x+1}=1+\sqrt{10x}.
11=11
Simplify. The value x=10 satisfies the equation.
x=0 x=10
List all solutions of \sqrt{12x+1}=\sqrt{10x}+1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}