Solve for k
k=4
Share
Copied to clipboard
\left(\sqrt{10-k}\right)^{2}=\left(\sqrt{3k-6}\right)^{2}
Square both sides of the equation.
10-k=\left(\sqrt{3k-6}\right)^{2}
Calculate \sqrt{10-k} to the power of 2 and get 10-k.
10-k=3k-6
Calculate \sqrt{3k-6} to the power of 2 and get 3k-6.
10-k-3k=-6
Subtract 3k from both sides.
10-4k=-6
Combine -k and -3k to get -4k.
-4k=-6-10
Subtract 10 from both sides.
-4k=-16
Subtract 10 from -6 to get -16.
k=\frac{-16}{-4}
Divide both sides by -4.
k=4
Divide -16 by -4 to get 4.
\sqrt{10-4}=\sqrt{3\times 4-6}
Substitute 4 for k in the equation \sqrt{10-k}=\sqrt{3k-6}.
6^{\frac{1}{2}}=6^{\frac{1}{2}}
Simplify. The value k=4 satisfies the equation.
k=4
Equation \sqrt{10-k}=\sqrt{3k-6} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}