Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\sqrt{1-x^{2}}=\frac{1}{5}-x
Subtract x from both sides of the equation.
\left(\sqrt{1-x^{2}}\right)^{2}=\left(\frac{1}{5}-x\right)^{2}
Square both sides of the equation.
1-x^{2}=\left(\frac{1}{5}-x\right)^{2}
Calculate \sqrt{1-x^{2}} to the power of 2 and get 1-x^{2}.
1-x^{2}=\frac{1}{25}-\frac{2}{5}x+x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\frac{1}{5}-x\right)^{2}.
1-x^{2}-\frac{1}{25}=-\frac{2}{5}x+x^{2}
Subtract \frac{1}{25} from both sides.
\frac{24}{25}-x^{2}=-\frac{2}{5}x+x^{2}
Subtract \frac{1}{25} from 1 to get \frac{24}{25}.
\frac{24}{25}-x^{2}+\frac{2}{5}x=x^{2}
Add \frac{2}{5}x to both sides.
\frac{24}{25}-x^{2}+\frac{2}{5}x-x^{2}=0
Subtract x^{2} from both sides.
\frac{24}{25}-2x^{2}+\frac{2}{5}x=0
Combine -x^{2} and -x^{2} to get -2x^{2}.
-2x^{2}+\frac{2}{5}x+\frac{24}{25}=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\frac{2}{5}±\sqrt{\left(\frac{2}{5}\right)^{2}-4\left(-2\right)\times \frac{24}{25}}}{2\left(-2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2 for a, \frac{2}{5} for b, and \frac{24}{25} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\frac{2}{5}±\sqrt{\frac{4}{25}-4\left(-2\right)\times \frac{24}{25}}}{2\left(-2\right)}
Square \frac{2}{5} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\frac{2}{5}±\sqrt{\frac{4}{25}+8\times \frac{24}{25}}}{2\left(-2\right)}
Multiply -4 times -2.
x=\frac{-\frac{2}{5}±\sqrt{\frac{4+192}{25}}}{2\left(-2\right)}
Multiply 8 times \frac{24}{25}.
x=\frac{-\frac{2}{5}±\sqrt{\frac{196}{25}}}{2\left(-2\right)}
Add \frac{4}{25} to \frac{192}{25} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-\frac{2}{5}±\frac{14}{5}}{2\left(-2\right)}
Take the square root of \frac{196}{25}.
x=\frac{-\frac{2}{5}±\frac{14}{5}}{-4}
Multiply 2 times -2.
x=\frac{\frac{12}{5}}{-4}
Now solve the equation x=\frac{-\frac{2}{5}±\frac{14}{5}}{-4} when ± is plus. Add -\frac{2}{5} to \frac{14}{5} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=-\frac{3}{5}
Divide \frac{12}{5} by -4.
x=-\frac{\frac{16}{5}}{-4}
Now solve the equation x=\frac{-\frac{2}{5}±\frac{14}{5}}{-4} when ± is minus. Subtract \frac{14}{5} from -\frac{2}{5} by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{4}{5}
Divide -\frac{16}{5} by -4.
x=-\frac{3}{5} x=\frac{4}{5}
The equation is now solved.
\sqrt{1-\left(-\frac{3}{5}\right)^{2}}-\frac{3}{5}=\frac{1}{5}
Substitute -\frac{3}{5} for x in the equation \sqrt{1-x^{2}}+x=\frac{1}{5}.
\frac{1}{5}=\frac{1}{5}
Simplify. The value x=-\frac{3}{5} satisfies the equation.
\sqrt{1-\left(\frac{4}{5}\right)^{2}}+\frac{4}{5}=\frac{1}{5}
Substitute \frac{4}{5} for x in the equation \sqrt{1-x^{2}}+x=\frac{1}{5}.
\frac{7}{5}=\frac{1}{5}
Simplify. The value x=\frac{4}{5} does not satisfy the equation.
x=-\frac{3}{5}
Equation \sqrt{1-x^{2}}=\frac{1}{5}-x has a unique solution.