Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\sqrt{1-\frac{\left(4\sqrt{19}\right)^{2}}{19^{2}}}
To raise \frac{4\sqrt{19}}{19} to a power, raise both numerator and denominator to the power and then divide.
\sqrt{1-\frac{4^{2}\left(\sqrt{19}\right)^{2}}{19^{2}}}
Expand \left(4\sqrt{19}\right)^{2}.
\sqrt{1-\frac{16\left(\sqrt{19}\right)^{2}}{19^{2}}}
Calculate 4 to the power of 2 and get 16.
\sqrt{1-\frac{16\times 19}{19^{2}}}
The square of \sqrt{19} is 19.
\sqrt{1-\frac{304}{19^{2}}}
Multiply 16 and 19 to get 304.
\sqrt{1-\frac{304}{361}}
Calculate 19 to the power of 2 and get 361.
\sqrt{1-\frac{16}{19}}
Reduce the fraction \frac{304}{361} to lowest terms by extracting and canceling out 19.
\sqrt{\frac{3}{19}}
Subtract \frac{16}{19} from 1 to get \frac{3}{19}.
\frac{\sqrt{3}}{\sqrt{19}}
Rewrite the square root of the division \sqrt{\frac{3}{19}} as the division of square roots \frac{\sqrt{3}}{\sqrt{19}}.
\frac{\sqrt{3}\sqrt{19}}{\left(\sqrt{19}\right)^{2}}
Rationalize the denominator of \frac{\sqrt{3}}{\sqrt{19}} by multiplying numerator and denominator by \sqrt{19}.
\frac{\sqrt{3}\sqrt{19}}{19}
The square of \sqrt{19} is 19.
\frac{\sqrt{57}}{19}
To multiply \sqrt{3} and \sqrt{19}, multiply the numbers under the square root.