Evaluate (complex solution)
\sqrt{511}i\approx 22.605309111i
Evaluate
\text{Indeterminate}
Real Part (complex solution)
0
Share
Copied to clipboard
\sqrt{1-\left(\frac{32\sqrt{2}}{\left(\sqrt{2}\right)^{2}}\right)^{2}}
Rationalize the denominator of \frac{32}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\sqrt{1-\left(\frac{32\sqrt{2}}{2}\right)^{2}}
The square of \sqrt{2} is 2.
\sqrt{1-\left(16\sqrt{2}\right)^{2}}
Divide 32\sqrt{2} by 2 to get 16\sqrt{2}.
\sqrt{1-16^{2}\left(\sqrt{2}\right)^{2}}
Expand \left(16\sqrt{2}\right)^{2}.
\sqrt{1-256\left(\sqrt{2}\right)^{2}}
Calculate 16 to the power of 2 and get 256.
\sqrt{1-256\times 2}
The square of \sqrt{2} is 2.
\sqrt{1-512}
Multiply 256 and 2 to get 512.
\sqrt{-511}
Subtract 512 from 1 to get -511.
\sqrt{511}i
Factor -511=511\left(-1\right). Rewrite the square root of the product \sqrt{511\left(-1\right)} as the product of square roots \sqrt{511}\sqrt{-1}. By definition, the square root of -1 is i.
\sqrt{1-\left(\frac{32\sqrt{2}}{\left(\sqrt{2}\right)^{2}}\right)^{2}}
Rationalize the denominator of \frac{32}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\sqrt{1-\left(\frac{32\sqrt{2}}{2}\right)^{2}}
The square of \sqrt{2} is 2.
\sqrt{1-\left(16\sqrt{2}\right)^{2}}
Divide 32\sqrt{2} by 2 to get 16\sqrt{2}.
\sqrt{1-16^{2}\left(\sqrt{2}\right)^{2}}
Expand \left(16\sqrt{2}\right)^{2}.
\sqrt{1-256\left(\sqrt{2}\right)^{2}}
Calculate 16 to the power of 2 and get 256.
\sqrt{1-256\times 2}
The square of \sqrt{2} is 2.
\sqrt{1-512}
Multiply 256 and 2 to get 512.
\sqrt{-511}
Subtract 512 from 1 to get -511.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}