Evaluate
-\frac{3\sqrt{5}}{5}\approx -1.341640786
Share
Copied to clipboard
2\sqrt{\frac{5+3}{5}}\sqrt{3}\left(-\frac{3}{4}\right)\sqrt{\frac{1}{6}}
Multiply 1 and 5 to get 5.
2\sqrt{\frac{8}{5}}\sqrt{3}\left(-\frac{3}{4}\right)\sqrt{\frac{1}{6}}
Add 5 and 3 to get 8.
2\times \frac{\sqrt{8}}{\sqrt{5}}\sqrt{3}\left(-\frac{3}{4}\right)\sqrt{\frac{1}{6}}
Rewrite the square root of the division \sqrt{\frac{8}{5}} as the division of square roots \frac{\sqrt{8}}{\sqrt{5}}.
2\times \frac{2\sqrt{2}}{\sqrt{5}}\sqrt{3}\left(-\frac{3}{4}\right)\sqrt{\frac{1}{6}}
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
2\times \frac{2\sqrt{2}\sqrt{5}}{\left(\sqrt{5}\right)^{2}}\sqrt{3}\left(-\frac{3}{4}\right)\sqrt{\frac{1}{6}}
Rationalize the denominator of \frac{2\sqrt{2}}{\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
2\times \frac{2\sqrt{2}\sqrt{5}}{5}\sqrt{3}\left(-\frac{3}{4}\right)\sqrt{\frac{1}{6}}
The square of \sqrt{5} is 5.
2\times \frac{2\sqrt{10}}{5}\sqrt{3}\left(-\frac{3}{4}\right)\sqrt{\frac{1}{6}}
To multiply \sqrt{2} and \sqrt{5}, multiply the numbers under the square root.
\frac{2\left(-3\right)}{4}\times \frac{2\sqrt{10}}{5}\sqrt{3}\sqrt{\frac{1}{6}}
Express 2\left(-\frac{3}{4}\right) as a single fraction.
\frac{-6}{4}\times \frac{2\sqrt{10}}{5}\sqrt{3}\sqrt{\frac{1}{6}}
Multiply 2 and -3 to get -6.
-\frac{3}{2}\times \frac{2\sqrt{10}}{5}\sqrt{3}\sqrt{\frac{1}{6}}
Reduce the fraction \frac{-6}{4} to lowest terms by extracting and canceling out 2.
-\frac{3}{2}\times \frac{2\sqrt{10}}{5}\sqrt{3}\times \frac{\sqrt{1}}{\sqrt{6}}
Rewrite the square root of the division \sqrt{\frac{1}{6}} as the division of square roots \frac{\sqrt{1}}{\sqrt{6}}.
-\frac{3}{2}\times \frac{2\sqrt{10}}{5}\sqrt{3}\times \frac{1}{\sqrt{6}}
Calculate the square root of 1 and get 1.
-\frac{3}{2}\times \frac{2\sqrt{10}}{5}\sqrt{3}\times \frac{\sqrt{6}}{\left(\sqrt{6}\right)^{2}}
Rationalize the denominator of \frac{1}{\sqrt{6}} by multiplying numerator and denominator by \sqrt{6}.
-\frac{3}{2}\times \frac{2\sqrt{10}}{5}\sqrt{3}\times \frac{\sqrt{6}}{6}
The square of \sqrt{6} is 6.
\frac{-3\times 2\sqrt{10}}{2\times 5}\sqrt{3}\times \frac{\sqrt{6}}{6}
Multiply -\frac{3}{2} times \frac{2\sqrt{10}}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{-3\sqrt{10}}{5}\sqrt{3}\times \frac{\sqrt{6}}{6}
Cancel out 2 in both numerator and denominator.
\frac{-3\sqrt{10}\sqrt{3}}{5}\times \frac{\sqrt{6}}{6}
Express \frac{-3\sqrt{10}}{5}\sqrt{3} as a single fraction.
\frac{-3\sqrt{10}\sqrt{3}\sqrt{6}}{5\times 6}
Multiply \frac{-3\sqrt{10}\sqrt{3}}{5} times \frac{\sqrt{6}}{6} by multiplying numerator times numerator and denominator times denominator.
\frac{-\sqrt{3}\sqrt{6}\sqrt{10}}{2\times 5}
Cancel out 3 in both numerator and denominator.
\frac{-\sqrt{3}\sqrt{3}\sqrt{2}\sqrt{10}}{2\times 5}
Factor 6=3\times 2. Rewrite the square root of the product \sqrt{3\times 2} as the product of square roots \sqrt{3}\sqrt{2}.
\frac{-3\sqrt{2}\sqrt{10}}{2\times 5}
Multiply \sqrt{3} and \sqrt{3} to get 3.
\frac{-3\sqrt{2}\sqrt{2}\sqrt{5}}{2\times 5}
Factor 10=2\times 5. Rewrite the square root of the product \sqrt{2\times 5} as the product of square roots \sqrt{2}\sqrt{5}.
\frac{-3\times 2\sqrt{5}}{2\times 5}
Multiply \sqrt{2} and \sqrt{2} to get 2.
\frac{-6\sqrt{5}}{2\times 5}
Multiply -3 and 2 to get -6.
\frac{-6\sqrt{5}}{10}
Multiply 2 and 5 to get 10.
-\frac{3}{5}\sqrt{5}
Divide -6\sqrt{5} by 10 to get -\frac{3}{5}\sqrt{5}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}