Evaluate
\frac{3\sqrt{14}}{55}\approx 0.204090403
Share
Copied to clipboard
\frac{\sqrt{\frac{5+3}{5}}}{22}\sqrt{\frac{1}{5}}\sqrt{63}
Multiply 1 and 5 to get 5.
\frac{\sqrt{\frac{8}{5}}}{22}\sqrt{\frac{1}{5}}\sqrt{63}
Add 5 and 3 to get 8.
\frac{\frac{\sqrt{8}}{\sqrt{5}}}{22}\sqrt{\frac{1}{5}}\sqrt{63}
Rewrite the square root of the division \sqrt{\frac{8}{5}} as the division of square roots \frac{\sqrt{8}}{\sqrt{5}}.
\frac{\frac{2\sqrt{2}}{\sqrt{5}}}{22}\sqrt{\frac{1}{5}}\sqrt{63}
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
\frac{\frac{2\sqrt{2}\sqrt{5}}{\left(\sqrt{5}\right)^{2}}}{22}\sqrt{\frac{1}{5}}\sqrt{63}
Rationalize the denominator of \frac{2\sqrt{2}}{\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
\frac{\frac{2\sqrt{2}\sqrt{5}}{5}}{22}\sqrt{\frac{1}{5}}\sqrt{63}
The square of \sqrt{5} is 5.
\frac{\frac{2\sqrt{10}}{5}}{22}\sqrt{\frac{1}{5}}\sqrt{63}
To multiply \sqrt{2} and \sqrt{5}, multiply the numbers under the square root.
\frac{2\sqrt{10}}{5\times 22}\sqrt{\frac{1}{5}}\sqrt{63}
Express \frac{\frac{2\sqrt{10}}{5}}{22} as a single fraction.
\frac{\sqrt{10}}{5\times 11}\sqrt{\frac{1}{5}}\sqrt{63}
Cancel out 2 in both numerator and denominator.
\frac{\sqrt{10}}{55}\sqrt{\frac{1}{5}}\sqrt{63}
Multiply 5 and 11 to get 55.
\frac{\sqrt{10}}{55}\times \frac{\sqrt{1}}{\sqrt{5}}\sqrt{63}
Rewrite the square root of the division \sqrt{\frac{1}{5}} as the division of square roots \frac{\sqrt{1}}{\sqrt{5}}.
\frac{\sqrt{10}}{55}\times \frac{1}{\sqrt{5}}\sqrt{63}
Calculate the square root of 1 and get 1.
\frac{\sqrt{10}}{55}\times \frac{\sqrt{5}}{\left(\sqrt{5}\right)^{2}}\sqrt{63}
Rationalize the denominator of \frac{1}{\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
\frac{\sqrt{10}}{55}\times \frac{\sqrt{5}}{5}\sqrt{63}
The square of \sqrt{5} is 5.
\frac{\sqrt{10}}{55}\times \frac{\sqrt{5}}{5}\times 3\sqrt{7}
Factor 63=3^{2}\times 7. Rewrite the square root of the product \sqrt{3^{2}\times 7} as the product of square roots \sqrt{3^{2}}\sqrt{7}. Take the square root of 3^{2}.
\frac{\sqrt{10}\sqrt{5}}{55\times 5}\times 3\sqrt{7}
Multiply \frac{\sqrt{10}}{55} times \frac{\sqrt{5}}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{\sqrt{10}\sqrt{5}\times 3}{55\times 5}\sqrt{7}
Express \frac{\sqrt{10}\sqrt{5}}{55\times 5}\times 3 as a single fraction.
\frac{\sqrt{10}\sqrt{5}\times 3\sqrt{7}}{55\times 5}
Express \frac{\sqrt{10}\sqrt{5}\times 3}{55\times 5}\sqrt{7} as a single fraction.
\frac{\sqrt{5}\sqrt{2}\sqrt{5}\times 3\sqrt{7}}{55\times 5}
Factor 10=5\times 2. Rewrite the square root of the product \sqrt{5\times 2} as the product of square roots \sqrt{5}\sqrt{2}.
\frac{5\sqrt{2}\times 3\sqrt{7}}{55\times 5}
Multiply \sqrt{5} and \sqrt{5} to get 5.
\frac{15\sqrt{2}\sqrt{7}}{55\times 5}
Multiply 5 and 3 to get 15.
\frac{15\sqrt{14}}{55\times 5}
To multiply \sqrt{2} and \sqrt{7}, multiply the numbers under the square root.
\frac{15\sqrt{14}}{275}
Multiply 55 and 5 to get 275.
\frac{3}{55}\sqrt{14}
Divide 15\sqrt{14} by 275 to get \frac{3}{55}\sqrt{14}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}