Evaluate
\frac{3\sqrt{2}}{2}\approx 2.121320344
Quiz
Arithmetic
5 problems similar to:
\sqrt { 1 \frac { 2 } { 3 } } \times \sqrt { \frac { 27 } { 10 } }
Share
Copied to clipboard
\sqrt{\frac{3+2}{3}}\sqrt{\frac{27}{10}}
Multiply 1 and 3 to get 3.
\sqrt{\frac{5}{3}}\sqrt{\frac{27}{10}}
Add 3 and 2 to get 5.
\frac{\sqrt{5}}{\sqrt{3}}\sqrt{\frac{27}{10}}
Rewrite the square root of the division \sqrt{\frac{5}{3}} as the division of square roots \frac{\sqrt{5}}{\sqrt{3}}.
\frac{\sqrt{5}\sqrt{3}}{\left(\sqrt{3}\right)^{2}}\sqrt{\frac{27}{10}}
Rationalize the denominator of \frac{\sqrt{5}}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{\sqrt{5}\sqrt{3}}{3}\sqrt{\frac{27}{10}}
The square of \sqrt{3} is 3.
\frac{\sqrt{15}}{3}\sqrt{\frac{27}{10}}
To multiply \sqrt{5} and \sqrt{3}, multiply the numbers under the square root.
\frac{\sqrt{15}}{3}\times \frac{\sqrt{27}}{\sqrt{10}}
Rewrite the square root of the division \sqrt{\frac{27}{10}} as the division of square roots \frac{\sqrt{27}}{\sqrt{10}}.
\frac{\sqrt{15}}{3}\times \frac{3\sqrt{3}}{\sqrt{10}}
Factor 27=3^{2}\times 3. Rewrite the square root of the product \sqrt{3^{2}\times 3} as the product of square roots \sqrt{3^{2}}\sqrt{3}. Take the square root of 3^{2}.
\frac{\sqrt{15}}{3}\times \frac{3\sqrt{3}\sqrt{10}}{\left(\sqrt{10}\right)^{2}}
Rationalize the denominator of \frac{3\sqrt{3}}{\sqrt{10}} by multiplying numerator and denominator by \sqrt{10}.
\frac{\sqrt{15}}{3}\times \frac{3\sqrt{3}\sqrt{10}}{10}
The square of \sqrt{10} is 10.
\frac{\sqrt{15}}{3}\times \frac{3\sqrt{30}}{10}
To multiply \sqrt{3} and \sqrt{10}, multiply the numbers under the square root.
\frac{\sqrt{15}\times 3\sqrt{30}}{3\times 10}
Multiply \frac{\sqrt{15}}{3} times \frac{3\sqrt{30}}{10} by multiplying numerator times numerator and denominator times denominator.
\frac{\sqrt{15}\sqrt{30}}{10}
Cancel out 3 in both numerator and denominator.
\frac{\sqrt{15}\sqrt{15}\sqrt{2}}{10}
Factor 30=15\times 2. Rewrite the square root of the product \sqrt{15\times 2} as the product of square roots \sqrt{15}\sqrt{2}.
\frac{15\sqrt{2}}{10}
Multiply \sqrt{15} and \sqrt{15} to get 15.
\frac{3}{2}\sqrt{2}
Divide 15\sqrt{2} by 10 to get \frac{3}{2}\sqrt{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}