Skip to main content
Solve for a
Tick mark Image

Similar Problems from Web Search

Share

\left(\sqrt{1+a}\right)^{2}=\left(\sqrt{4-2a}\right)^{2}
Square both sides of the equation.
1+a=\left(\sqrt{4-2a}\right)^{2}
Calculate \sqrt{1+a} to the power of 2 and get 1+a.
1+a=4-2a
Calculate \sqrt{4-2a} to the power of 2 and get 4-2a.
1+a+2a=4
Add 2a to both sides.
1+3a=4
Combine a and 2a to get 3a.
3a=4-1
Subtract 1 from both sides.
3a=3
Subtract 1 from 4 to get 3.
a=\frac{3}{3}
Divide both sides by 3.
a=1
Divide 3 by 3 to get 1.
\sqrt{1+1}=\sqrt{4-2}
Substitute 1 for a in the equation \sqrt{1+a}=\sqrt{4-2a}.
2^{\frac{1}{2}}=2^{\frac{1}{2}}
Simplify. The value a=1 satisfies the equation.
a=1
Equation \sqrt{a+1}=\sqrt{4-2a} has a unique solution.