Solve for a
a=1
Share
Copied to clipboard
\left(\sqrt{1+a}\right)^{2}=\left(\sqrt{4-2a}\right)^{2}
Square both sides of the equation.
1+a=\left(\sqrt{4-2a}\right)^{2}
Calculate \sqrt{1+a} to the power of 2 and get 1+a.
1+a=4-2a
Calculate \sqrt{4-2a} to the power of 2 and get 4-2a.
1+a+2a=4
Add 2a to both sides.
1+3a=4
Combine a and 2a to get 3a.
3a=4-1
Subtract 1 from both sides.
3a=3
Subtract 1 from 4 to get 3.
a=\frac{3}{3}
Divide both sides by 3.
a=1
Divide 3 by 3 to get 1.
\sqrt{1+1}=\sqrt{4-2}
Substitute 1 for a in the equation \sqrt{1+a}=\sqrt{4-2a}.
2^{\frac{1}{2}}=2^{\frac{1}{2}}
Simplify. The value a=1 satisfies the equation.
a=1
Equation \sqrt{a+1}=\sqrt{4-2a} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}