Evaluate
\frac{\sqrt{100000010}}{10000}-1\approx 0.00000005
Share
Copied to clipboard
\sqrt{1+\frac{1}{10000000}}-1
Calculate 10 to the power of -7 and get \frac{1}{10000000}.
\sqrt{\frac{10000001}{10000000}}-1
Add 1 and \frac{1}{10000000} to get \frac{10000001}{10000000}.
\frac{\sqrt{10000001}}{\sqrt{10000000}}-1
Rewrite the square root of the division \sqrt{\frac{10000001}{10000000}} as the division of square roots \frac{\sqrt{10000001}}{\sqrt{10000000}}.
\frac{\sqrt{10000001}}{1000\sqrt{10}}-1
Factor 10000000=1000^{2}\times 10. Rewrite the square root of the product \sqrt{1000^{2}\times 10} as the product of square roots \sqrt{1000^{2}}\sqrt{10}. Take the square root of 1000^{2}.
\frac{\sqrt{10000001}\sqrt{10}}{1000\left(\sqrt{10}\right)^{2}}-1
Rationalize the denominator of \frac{\sqrt{10000001}}{1000\sqrt{10}} by multiplying numerator and denominator by \sqrt{10}.
\frac{\sqrt{10000001}\sqrt{10}}{1000\times 10}-1
The square of \sqrt{10} is 10.
\frac{\sqrt{100000010}}{1000\times 10}-1
To multiply \sqrt{10000001} and \sqrt{10}, multiply the numbers under the square root.
\frac{\sqrt{100000010}}{10000}-1
Multiply 1000 and 10 to get 10000.
\frac{\sqrt{100000010}}{10000}-\frac{10000}{10000}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{10000}{10000}.
\frac{\sqrt{100000010}-10000}{10000}
Since \frac{\sqrt{100000010}}{10000} and \frac{10000}{10000} have the same denominator, subtract them by subtracting their numerators.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}