Evaluate
\frac{2\sqrt{3}}{3}\approx 1.154700538
Share
Copied to clipboard
\sqrt{\frac{12}{12}+\frac{1}{12}+\frac{1}{2^{2}}}
Convert 1 to fraction \frac{12}{12}.
\sqrt{\frac{12+1}{12}+\frac{1}{2^{2}}}
Since \frac{12}{12} and \frac{1}{12} have the same denominator, add them by adding their numerators.
\sqrt{\frac{13}{12}+\frac{1}{2^{2}}}
Add 12 and 1 to get 13.
\sqrt{\frac{13}{12}+\frac{1}{4}}
Calculate 2 to the power of 2 and get 4.
\sqrt{\frac{13}{12}+\frac{3}{12}}
Least common multiple of 12 and 4 is 12. Convert \frac{13}{12} and \frac{1}{4} to fractions with denominator 12.
\sqrt{\frac{13+3}{12}}
Since \frac{13}{12} and \frac{3}{12} have the same denominator, add them by adding their numerators.
\sqrt{\frac{16}{12}}
Add 13 and 3 to get 16.
\sqrt{\frac{4}{3}}
Reduce the fraction \frac{16}{12} to lowest terms by extracting and canceling out 4.
\frac{\sqrt{4}}{\sqrt{3}}
Rewrite the square root of the division \sqrt{\frac{4}{3}} as the division of square roots \frac{\sqrt{4}}{\sqrt{3}}.
\frac{2}{\sqrt{3}}
Calculate the square root of 4 and get 2.
\frac{2\sqrt{3}}{\left(\sqrt{3}\right)^{2}}
Rationalize the denominator of \frac{2}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{2\sqrt{3}}{3}
The square of \sqrt{3} is 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}