Solve for k
k=-2
Share
Copied to clipboard
\left(\sqrt{-9k}\right)^{2}=\left(\sqrt{16-k}\right)^{2}
Square both sides of the equation.
-9k=\left(\sqrt{16-k}\right)^{2}
Calculate \sqrt{-9k} to the power of 2 and get -9k.
-9k=16-k
Calculate \sqrt{16-k} to the power of 2 and get 16-k.
-9k+k=16
Add k to both sides.
-8k=16
Combine -9k and k to get -8k.
k=\frac{16}{-8}
Divide both sides by -8.
k=-2
Divide 16 by -8 to get -2.
\sqrt{-9\left(-2\right)}=\sqrt{16-\left(-2\right)}
Substitute -2 for k in the equation \sqrt{-9k}=\sqrt{16-k}.
3\times 2^{\frac{1}{2}}=3\times 2^{\frac{1}{2}}
Simplify. The value k=-2 satisfies the equation.
k=-2
Equation \sqrt{-9k}=\sqrt{16-k} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}