Solve for n
n=-8
Share
Copied to clipboard
\left(\sqrt{-12-2n}\right)^{2}=\left(\sqrt{-4-n}\right)^{2}
Square both sides of the equation.
-12-2n=\left(\sqrt{-4-n}\right)^{2}
Calculate \sqrt{-12-2n} to the power of 2 and get -12-2n.
-12-2n=-4-n
Calculate \sqrt{-4-n} to the power of 2 and get -4-n.
-12-2n+n=-4
Add n to both sides.
-12-n=-4
Combine -2n and n to get -n.
-n=-4+12
Add 12 to both sides.
-n=8
Add -4 and 12 to get 8.
n=-8
Multiply both sides by -1.
\sqrt{-12-2\left(-8\right)}=\sqrt{-4-\left(-8\right)}
Substitute -8 for n in the equation \sqrt{-12-2n}=\sqrt{-4-n}.
2=2
Simplify. The value n=-8 satisfies the equation.
n=-8
Equation \sqrt{-2n-12}=\sqrt{-n-4} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}